APPENDIX 5 HYDROLOGY & HYDRAULICS

San Bernardino County

Hydrology & Hydraulics Preliminary Report

Prepared: February, 2021 Revised: -

FOR:

Maple Hill Fields Complex

Prepared For:
Mr. Steve Foulkes
Bear Valley Unified School District Education Foundation
P.O. Box 1529
Big Bear City, CA 92314
909-866-4473

Prepared by: Hicks & Hartwick, Inc. 37 E Olive Ave. STE C Redlands, CA 92373 909-793-2257

San Bernardino County

Hydrology & Hydraulics Preliminary Report

Prepared: February, 2021

FOR:

Maple Hill Fields Complex

Prepared For:

Mr. Steve Foulkes
Bear Valley Unified School District Education Foundation
P.O. Box 1529
Big Bear City, CA 92314
909-866-4473

Prepared by: Hicks & Hartwick, Inc. 37 E Olive Ave. STE C Redlands, CA 92373 909-793-2257

Dated: February 3, 2021

Bear Valley Unified School District Education Foundation Maple Hill Fields Complex

Hydrology & Hydraulics Preliminary Report

GENERAL

The subject property of this report is approximately 17 acres of undeveloped woodland on the ridgeline north of and abutting the Baldwin Lake Elementary School, on the north side of Sugarloaf on Baldwin Lane.

This report covers the existing drainage conditions only. The watershed runoff rates are determined using San Bernardino County standards and computer calculations. Rational Method Hydrology Computer Program Package, developed by Advanced Engineering Software (AES), is used to calculate the storm runoff rates.

The hydrologic soil type, ground cover and development type are user specified. The hydrologic soil type is as provided in the County Manual. The ground cover and development type are based on observation and experience. The runoff rates are from the NOAA Hydrometeorological Design Studies Center, as included in this report. Rational Hydrology analysis was performed for the theoretical 2-year, 10-year and 100-year storm events. The detailed summary computer output for each analysis is attached as Exhibits. The existing conditions and proposed conditions maps are provided, illustrating the layout for, and as referenced by, the computer models.

EXISTING CONDITIONS

This drainage study includes runoff analysis of the watershed covering the subject property. The watershed is undeveloped forested mountainous terrain with fair coverage.

The runoff flows away from the peak and ridgeline within the study area. Because of the configuration, and the proposed development of the ridgeline, there are several small subareas. The existing flow characteristics are primarily sheet flow, with rivulets and flowlines beginning to develop. The existing subareas were selected to provide comparative analysis to the proposed configuration.

The existing hydrology is calculated based on the existing coverage as illustrated on the accompanying map. The calculated 2-year, 10-year and 100-year runoff for the existing conditions is included in this report. The existing conditions reference map is also attached.

PROPOSED CONDITIONS

The proposed development is a sports complex consisting of an access road from Baldwin Lane, parking areas, and three sports fields; all as shown on the attached proposed conditions map.

The proposed development will include drainage structures to convey the

runoff to natural flowlines, or to flow dissipation structures. A basin in proposed at the entrance near Baldwin Lane. The sports fields will have subsurface storm drains that outlet to the natural flowline for that drainage area.

The sports field areas provide a minor increase in peak flowrate. The parking and access road areas exhibit a marked increase due to the conversion from undeveloped land to paved areas. The largest outfall flowrate will pass through the proposed basin.

The proposed hydrology is calculated based on the proposed development coverage as illustrated on the accompanying map. The calculated 2-year, 10-year and 100-year runoff for the proposed conditions is included in this report. The proposed conditions reference map is also attached.

PF tabular

PF graphical

General Information NOAA ATLAS 14 POINT PRECIPITATION FREQUENCY ESTIMATES: CA Homepage **Progress Reports** Data description FAQ Data type: Precipitation depth Units: English ➤ Time series type: Partial duration Glossary Precipitation Select location Frequency 1) Manually: Data Server GIS Grids a) By location (decimal degrees, use "-" for S and W): Latitude: 34.253611 Longitude: -116.83083 Submit Maps Time Series b) By station (list of CA stations): Select station Temporals Documents c) By address Search Q Probable Maximum 2) Use map (if ESRI interactive map is not loading, try adding the host; https://is.arcgis.com/ to the firewall, or contact us at hdsc.guestions@noaa.gov): Precipitation Documents a) Select location Miscellaneous Мар Move crosshair or double click Publications Terrain Storm Analysis b) Click on station icon **Record Precipitation** ☐ Show stations on map Location information: Contact Us Name: Sugarloaf, California, USA* Inquiries Latitude: 34.2536° Longitude: -116.8308° Elevation: 7044.72 ft ** USA.gov North Shore Dr Big Bear City Sugarloaf ning San Bernardino National Forest +

POINT PRECIPITATION FREQUENCY (PF) ESTIMATES

Source: ESRI Maps ** Source: USGS

Print page

WITH 90% CONFIDENCE INTERVALS AND SUPPLEMENTARY INFORMATION NOAA Atlas 14, Volume 6, Version 2

Supplementary information

		PDS-based	precipitation	n frequency	estimates w	ith 90% cor	nfidence inte	rvals (in inc	:hes) ¹	
Duration					Average recurren	ce interval (years)				
Duration	1	2	5	10	25	50	100	200	500	1000
5-min	0.143 (0.118-0.174)	0.196 (0.162-0.239)	0.273 (0.225-0.334)	0.340 (0.278-0.421)	0.442 (0.349-0.564)	0.527 (0.408-0.687)	0.621 (0.470-0.830)	0.727 (0.534-0.998)	0.884 (0.624-1.27)	1.13 (0.768-1.67
10-min	0.204 (0.169-0.249)	0.281 (0.232-0.343)	0.391 (0.322-0.479)	0.488 (0.399-0.603)	0.633 (0.501-0.808)	0.756 (0.585-0.985)	0.890 (0.673-1.19)	1.04 (0.766-1.43)	1.27 (0.894-1.81)	1.62 (1.10-2.39)
15-min	0.247 (0.205-0.302)	0.340 (0.281-0.415)	0.473 (0.390-0.579)	0.590 (0.483-0.729)	0.766 (0.606-0.978)	0.914 (0.708-1.19)	1.08 (0.814-1.44)	1.26 (0.926-1.73)	1.53 (1.08-2.19)	1.95 (1.33-2.90)
30-min	0.356 (0.294-0.434)	0.489 (0.404-0.597)	0.680 (0.561-0.833)	0.849 (0.695-1.05)	1.10 (0.872-1.41)	1.32 (1.02-1.71)	1.55 (1.17-2.07)	1.81 (1.33-2.49)	2.21 (1.56-3.16)	2.81 (1.92-4.17
60-min	0.504 (0.417-0.615)	0.693 (0.573-0.847)	0.964 (0.795-1.18)	1.20 (0.984-1.49)	1.56 (1.24-1.99)	1.86 (1.44-2.43)	2.20 (1.66-2.93)	2.57 (1.89-3.53)	3.13 (2.20-4.47)	3.98 (2.72-5.90
2-hr	0.722 (0.598-0.881)	0.982 (0.812-1.20)	1.35 (1.11-1.65)	1.66 (1.36-2.05)	2.12 (1.67-2.70)	2.49 (1.93-3.25)	2.89 (2.19-3.86)	3.33 (2.44-4.57)	3.96 (2.79-5.67)	4.48 (3.05-6.64
3-hr	0.897 (0.742-1.09)	1.21 (1.00-1.48)	1.65 (1.36-2.02)	2.03 (1.66-2.50)	2.57 (2.03-3.28)	3.01 (2.33-3.93)	3.48 (2.63-4.65)	3.99 (2.93-5.48)	4.72 (3.33-6.75)	5.31 (3.62-7.87
6-hr	1.31 (1.08-1.60)	1.76 (1.45-2.15)	2.38 (1.97-2.92)	2.92 (2.39-3.61)	3.69 (2.92-4.71)	4.32 (3.34-5.63)	4.98 (3.76-6.65)	5.69 (4.19-7.82)	6.72 (4.74-9.62)	7.55 (5.15-11.2

12-hr	1.80 (1.49-2.20)	2.45 (2.03-3.00)	3.37 (2.78-4.13)	4.17 (3.41-5.15)	5.34 (4.22-6.81)	6.30 (4.88-8.21)	7.33 (5.55-9.80)	8.47 (6.23-11.6)	10.1 (7.14-14.5)	11.5 (7.83-17.0)
24-hr	2.54 (2.25-2.93)	3.52 (3.11-4.06)	4.92 (4.35-5.69)	6.17 (5.40-7.19)	8.04 (6.81-9.68)	9.62 (7.99-11.8)	11.4 (9.21-14.3)	13.3 (10.5-17.2)	16.3 (12.3-21.9)	18.8 (13.7-26.2)
2-day	3.21 (2.84-3.69)	4.44 (3.93-5.12)	6.26 (5.52-7.23)	7.90 (6.92-9.21)	10.4 (8.82-12.5)	12.6 (10.4-15.4)	15.0 (12.2-18.9)	17.8 (14.0-23.0)	22.0 (16.7-29.7)	25.8 (18.8-35.9)
3-day	3.53 (3.13-4.07)	4.89 (4.33-5.64)	6.92 (6.11-8.00)	8.77 (7.68-10.2)	11.6 (9.84-14.0)	14.1 (11.7-17.3)	16.9 (13.7-21.3)	20.1 (15.9-26.1)	25.1 (19.0-33.9)	29.6 (21.6-41.2)
4-day	3.79 (3.36-4.36)	5.27 (4.66-6.07)	7.47 (6.59-8.63)	9.48 (8.30-11.0)	12.6 (10.7-15.2)	15.3 (12.7-18.8)	18.4 (14.9-23.2)	21.9 (17.3-28.4)	27.5 (20.8-37.0)	32.3 (23.7-45.1)
7-day	4.31 (3.82-4.96)	6.05 (5.35-6.97)	8.63 (7.62-9.98)	11.0 (9.62-12.8)	14.6 (12.4-17.6)	17.8 (14.8-21.8)	21.3 (17.3-26.9)	25.4 (20.0-32.9)	31.7 (24.0-42.8)	37.3 (27.3-52.0)
10-day	4.64 (4.11-5.34)	6.55 (5.80-7.56)	9.39 (8.29-10.9)	12.0 (10.5-14.0)	15.9 (13.5-19.2)	19.3 (16.1-23.8)	23.2 (18.8-29.2)	27.6 (21.7-35.7)	34.3 (26.0-46.2)	40.2 (29.4-56.0)
20-day	5.59 (4.95-6.44)	7.96 (7.04-9.18)	11.4 (10.1-13.2)	14.6 (12.8-17.0)	19.4 (16.4-23.3)	23.5 (19.5-28.8)	28.0 (22.7-35.3)	33.2 (26.2-43.0)	41.1 (31.1-55.4)	47.9 (35.0-66.8)
30-day	6.55 (5.81-7.55)	9.33 (8.26-10.8)	13.4 (11.8-15.5)	17.1 (14.9-19.9)	22.6 (19.1-27.2)	27.3 (22.7-33.5)	32.5 (26.4-40.9)	38.4 (30.3-49.7)	47.3 (35.8-63.7)	54.9 (40.1-76.5)
45-day	7.87 (6.97-9.06)	11.1 (9.87-12.9)	15.9 (14.1-18.4)	20.2 (17.7-23.5)	26.6 (22.5-32.0)	32.0 (26.6-39.4)	38.0 (30.8-47.9)	44.8 (35.3-57.9)	54.8 (41.4-73.8)	63.3 (46.3-88.3)
60-day	9.15 (8.11-10.5)	12.9 (11.4-14.8)	18.2 (16.1-21.1)	23.0 (20.2-26.8)	30.2 (25.6-36.4)	36.3 (30.1-44.6)	42.9 (34.8-54.0)	50.3 (39.7-65.1)	61.3 (46.4-82.6)	70.6 (51.7-98.5)

¹ Precipitation frequency (PF) estimates in this table are based on frequency analysis of partial duration series (PDS).

Numbers in parenthesis are PF estimates at lower and upper bounds of the 90% confidence interval. The probability that precipitation frequency estimates (for a given duration and average recurrence interval) will be greater than the upper bound (or less than the lower bound) is 5%. Estimates at upper bounds are not checked against probable maximum precipitation (PMP) estimates and may be higher than currently valid PMP values.

Please refer to NOAA Atlas 14 document for more information.

Estimates from the table in CSV format: Precipitation frequency estimates V Submit

Main Link Categories: Home | OWP

US Department of Commerce
National Oceanic and Atmospheric Administration
National Weather Service
Office of Water Prediction (OWP)
1325 East West Highway
Silver Spring, MD 20910
Page Author: HDSC webmaster
Page last modified: April 21, 2017

Map Disclaimer Disclaimer Credits Glossary Privacy Pc About Career Opportur

San Bernardino County

Hydrology & Hydraulics Preliminary Report

EXISTING HYDROLOGY 2-YEAR RUNOFF

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEA2.DAT

TIME/DATE OF STUDY: 12:57 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.6930

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 3.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 675.00

ELEVATION DATA: UPSTREAM(FEET) = 7056.00 DOWNSTREAM(FEET) = 6957.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.037
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.916
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                            Ap SCS
                                                       Tс
                                   Fр
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
 "WOODLAND, GRASS"
                      C
                             1.94 0.43 1.000 77 14.04
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 2.59
TOTAL AREA(ACRES) = 1.94 PEAK FLOW RATE(CFS) = 2.59
********************
 FLOW PROCESS FROM NODE
                      3.00 TO NODE
                                    3.00 \text{ IS CODE} = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 14.04
 RAINFALL INTENSITY(INCH/HR) = 1.92
 AREA-AVERAGED Fm(INCH/HR) = 0.43
 AREA-AVERAGED Fp(INCH/HR) = 0.43
 AREA-AVERAGED Ap = 1.00
 EFFECTIVE STREAM AREA(ACRES) = 1.94
 TOTAL STREAM AREA(ACRES) = 1.94
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 21
._____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 812.00
 ELEVATION DATA: UPSTREAM(FEET) = 7053.00 DOWNSTREAM(FEET) = 6957.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 15.779
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.765
 SUBAREA To AND LOSS RATE DATA(AMC II):
                                   Fp Ap SCS Tc
  DEVELOPMENT TYPE/ SCS SOIL AREA
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                С
 "WOODLAND, GRASS"
                            5.21 0.43
                                           1.000 77 15.78
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 6.24
 TOTAL AREA(ACRES) = 5.21 PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 3.00 TO NODE 3.00 IS CODE = 1
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 15.78
 RAINFALL INTENSITY(INCH/HR) = 1.77
 AREA-AVERAGED Fm(INCH/HR) = 0.43
 AREA-AVERAGED Fp(INCH/HR) = 0.43
 AREA-AVERAGED Ap = 1.00
 EFFECTIVE STREAM AREA(ACRES) = 5.21
 TOTAL STREAM AREA(ACRES) = 5.21
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.24
 ** CONFLUENCE DATA **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 2.59 14.04 1.916 0.43( 0.43) 1.00 1 9 1 00

    2.59
    14.04
    1.916
    0.43( 0.43) 1.00
    1.9
    1.00

    6.24
    15.78
    1.765
    0.43( 0.43) 1.00
    5.2
    2.00

 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

      8.77
      14.04
      1.916
      0.43( 0.43) 1.00
      6.6
      1.00

      8.57
      15.78
      1.765
      0.43( 0.43) 1.00
      7.2
      2.00

 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 8.77 Tc(MIN.) = 14.04 EFFECTIVE AREA(ACRES) = 6.57 AREA-AVERAGED Fm(INCH/HR) = 0.43
 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.00
 TOTAL AREA(ACRES) = 7.2
 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 3.00 = 812.00 FEET.
*******************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 53
______
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 6957.00 DOWNSTREAM(FEET) = 6940.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 176.00 CHANNEL SLOPE = 0.0966
 SLOPE ADJUSTMENT CURVE USED:
 EFFECTIVE SLOPE = .0966 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
 CHANNEL FLOW THRU SUBAREA(CFS) = 8.77
 FLOW VELOCITY(FEET/SEC) = 3.59 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
 TRAVEL TIME(MIN.) = 0.82 Tc(MIN.) = 14.85
 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 4.00 = 988.00 FEET.
*******************
 FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81
   _____
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
```

MAINLINE Tc(MIN.) = 14.85
* 2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.841
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL FAIR COVER
"WOODLAND, GRASS" C 1.51 0.43 1.000 77
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
SUBAREA AREA(ACRES) = 1.51 SUBAREA RUNOFF(CFS) = 1.91
EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43
AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 8.7 PEAK FLOW RATE(CFS) = 10.24
END OF STUDY SUMMARY:
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.85
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.85 EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.85 EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.85 EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.85 EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.85 EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000 PEAK FLOW RATE(CFS) = 10.24 ** PEAK FLOW RATE TABLE **
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.85 EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000 PEAK FLOW RATE(CFS) = 10.24 ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.85 EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000 PEAK FLOW RATE(CFS) = 10.24 ** PEAK FLOW RATE TABLE **
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.85 EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000 PEAK FLOW RATE(CFS) = 10.24 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.85 EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000 PEAK FLOW RATE(CFS) = 10.24 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 10.24 14.85 1.841 0.43(0.43) 1.00 8.1 1.00

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc.
37 East Olive Avenue, Suite C
Redlands, CA 92373
(909) 793-2257

FILE NAME: 0193HEB2.DAT

TIME/DATE OF STUDY: 13:05 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.6930

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 477.00

ELEVATION DATA: UPSTREAM(FEET) = 7061.00 DOWNSTREAM(FEET) = 7008.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.914
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.031
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                            Аp
                                                  SCS
                                                      Tc
                                    Fр
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                                          1.000 77
 "WOODLAND,GRASS"
                      С
                             1.41 0.43
                                                      12.91
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 2.03
 TOTAL AREA(ACRES) = 1.41 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.4 TC(MIN.) = 12.91
EFFECTIVE AREA(ACRES) = 1.41 AREA-AVERAGED Fm(INCH/HR) = 0.43
 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 2.03
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEC2.DAT

TIME/DATE OF STUDY: 13:05 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.6930

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 362.00

ELEVATION DATA: UPSTREAM(FEET) = 7064.40 DOWNSTREAM(FEET) = 7009.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.847
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.295
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                 SCS SOIL AREA
                                                  SCS
                                                       Tc
                                    Fр
                                            Aр
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                                          1.000 77
 "WOODLAND,GRASS"
                      С
                             1.25
                                    0.43
                                                       10.85
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 2.09
 TOTAL AREA(ACRES) = 1.25
                         PEAK FLOW RATE(CFS) =
                                               2.09
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.2 TC(MIN.) = 10.85
EFFECTIVE AREA(ACRES) = 1.25 AREA-AVERAGED Fm(INCH/HR) = 0.43
 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 2.09
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HED2.DAT

TIME/DATE OF STUDY: 13:10 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.6930

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 302.00

ELEVATION DATA: UPSTREAM(FEET) = 7064.40 DOWNSTREAM(FEET) = 7037.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.201
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.244
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                            Аp
                                                  SCS
                                                      Tc
                                    Fр
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                                          1.000 77
 "WOODLAND,GRASS"
                      С
                             0.59
                                    0.43
                                                      11.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 0.96
 TOTAL AREA(ACRES) = 0.59 PEAK FLOW RATE(CFS) =
                                               0.96
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 0.6 TC(MIN.) = 11.20 EFFECTIVE AREA(ACRES) = 0.59 AREA-AVERAGED Fm(INCH/HR) = 0.43
 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 0.96
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEE2.DAT

TIME/DATE OF STUDY: 13:13 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.6930

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 805.00

ELEVATION DATA: UPSTREAM(FEET) = 7064.00 DOWNSTREAM(FEET) = 7028.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 19.099
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.544
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                  SCS
                                                       Tc
                                    Fр
                                            Аp
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                                            1.000 77
 "WOODLAND,GRASS"
                      С
                             2.88
                                     0.43
                                                       19.10
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 2.88
 TOTAL AREA(ACRES) = 2.88 PEAK FLOW RATE(CFS) =
                                               2.88
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 2.9 TC(MIN.) = 19.10
EFFECTIVE AREA(ACRES) = 2.88 AREA-AVERAGED Fm(INCH/HR) = 0.43
 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 2.88
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc.
37 East Olive Avenue, Suite C
Redlands, CA 92373
(909) 793-2257

FILE NAME: 0193HEF2.DAT

TIME/DATE OF STUDY: 13:22 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.6930

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 327.00

ELEVATION DATA: UPSTREAM(FEET) = 7043.00 DOWNSTREAM(FEET) = 7022.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.391
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.091
 SUBAREA To AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Аp
                                           SCS
                                               Tc
                               Fр
                GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 NATURAL FAIR COVER
                                    1.000 77
 "WOODLAND,GRASS"
                   С
                         0.83 0.43
                                               12.39
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 1.24
 TOTAL AREA(ACRES) = 0.83 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 1.24
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEG2.DAT

TIME/DATE OF STUDY: 13:23 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.6930

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 993.00

ELEVATION DATA: UPSTREAM(FEET) = 7045.00 DOWNSTREAM(FEET) = 7013.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 22.179
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.391
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                            Аp
                                                  SCS
                                                      Tc
                                    Fр
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                                          1.000 77
 "WOODLAND,GRASS"
                      С
                             1.51 0.43
                                                      22.18
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 1.30
 TOTAL AREA(ACRES) = 1.51 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.5 TC(MIN.) = 22.18
EFFECTIVE AREA(ACRES) = 1.51 AREA-AVERAGED Fm(INCH/HR) = 0.43
 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 1.30
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc.
37 East Olive Avenue, Suite C
Redlands, CA 92373
(909) 793-2257

FILE NAME: 0193HEH2.DAT

TIME/DATE OF STUDY: 13:25 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.6930

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 286.00

ELEVATION DATA: UPSTREAM(FEET) = 7018.00 DOWNSTREAM(FEET) = 7005.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.584
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.068
 SUBAREA To AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Аp
                                           SCS
                                               Tc
                               Fр
                GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 NATURAL FAIR COVER
                                    1.000 77
 "WOODLAND,GRASS"
                   С
                         0.24 0.43
                                               12.58
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 0.35
 TOTAL AREA(ACRES) = 0.24 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 0.35
______
______
```

San Bernardino County

Hydrology & Hydraulics Preliminary Report

EXISTING HYDROLOGY 10-YEAR RUNOFF

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEAT.DAT

TIME/DATE OF STUDY: 12:57 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2000

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 3.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 675.00

ELEVATION DATA: UPSTREAM(FEET) = 7056.00 DOWNSTREAM(FEET) = 6957.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.037
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.317
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                            Ap SCS
                                                       Tс
                                   Fρ
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                             1.94 0.43
 "WOODLAND, GRASS"
                      C
                                          1.000 77 14.04
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 5.03
 TOTAL AREA(ACRES) = 1.94 PEAK FLOW RATE(CFS) = 5.03
************************
 FLOW PROCESS FROM NODE
                      3.00 TO NODE
                                    3.00 \text{ IS CODE} = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 14.04
 RAINFALL INTENSITY(INCH/HR) = 3.32
 AREA-AVERAGED Fm(INCH/HR) = 0.43
 AREA-AVERAGED Fp(INCH/HR) = 0.43
 AREA-AVERAGED Ap = 1.00
 EFFECTIVE STREAM AREA(ACRES) = 1.94
 TOTAL STREAM AREA(ACRES) = 1.94
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                  5.03
*************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 21
._____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 812.00
 ELEVATION DATA: UPSTREAM(FEET) = 7053.00 DOWNSTREAM(FEET) = 6957.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 15.779
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.057
 SUBAREA To AND LOSS RATE DATA(AMC II):
                                   Fp Ap SCS Tc
  DEVELOPMENT TYPE/ SCS SOIL AREA
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                C
 "WOODLAND, GRASS"
                            5.21 0.43
                                           1.000 77 15.78
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 12.30
                  5.21 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
************************
                     3.00 TO NODE 3.00 IS CODE = 1
 FLOW PROCESS FROM NODE
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
  >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
  TOTAL NUMBER OF STREAMS = 2
  CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
  TIME OF CONCENTRATION(MIN.) = 15.78
 RAINFALL INTENSITY(INCH/HR) = 3.06
  AREA-AVERAGED Fm(INCH/HR) = 0.43
 AREA-AVERAGED Fp(INCH/HR) = 0.43
  AREA-AVERAGED Ap = 1.00
  EFFECTIVE STREAM AREA(ACRES) = 5.21
  TOTAL STREAM AREA(ACRES) = 5.21
  PEAK FLOW RATE(CFS) AT CONFLUENCE = 12.30
  ** CONFLUENCE DATA **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        5.03
        14.04
        3.317
        0.43(0.043)
        1.00
        1.0
        1.0
        1.0

              5.03 14.04 3.317 0.43( 0.43) 1.00 1.9
                                                                        1.00
      2 12.30 15.78 3.057 0.43( 0.43) 1.00 5.2 2.00
  RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
  CONFLUENCE FORMULA USED FOR 2 STREAMS.
  ** PEAK FLOW RATE TABLE **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        17.06
        14.04
        3.317
        0.43(0.43)
        1.00
        6.6
        1.00

        2
        16.88
        15.78
        3.057
        0.43(0.43)
        1.00
        7.2
        2.00

  COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 17.06 Tc(MIN.) = 14.04
EFFECTIVE AREA(ACRES) = 6.57 AREA-AVERAGED Fm(INCH/HR) = 0.43
  AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.00
  TOTAL AREA(ACRES) = 7.2
 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 3.00 = 812.00 FEET.
*******************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 53
______
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 6957.00 DOWNSTREAM(FEET) = 6940.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 176.00 CHANNEL SLOPE = 0.0966
 SLOPE ADJUSTMENT CURVE USED:
 EFFECTIVE SLOPE = .0966 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
  CHANNEL FLOW THRU SUBAREA(CFS) = 17.06
 FLOW VELOCITY(FEET/SEC) = 4.48 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
 TRAVEL TIME(MIN.) = 0.66 Tc(MIN.) = 14.69
 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 4.00 = 988.00 FEET.
*******************
 FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81
    _____
```

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<

MAINLINE Tc(MIN.) = 14.69
* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.213
SUBAREA LOSS RATE DATA(AMC II):
DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL FAIR COVER
"WOODLAND, GRASS" C 1.51 0.43 1.000 77
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
SUBAREA AREA(ACRES) = 1.51 SUBAREA RUNOFF(CFS) = 3.78
EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43
AREA-AVERAGED $fp(INCH/HR) = 0.43$ AREA-AVERAGED $Ap = 1.00$
TOTAL AREA(ACRES) = 8.7 PEAK FLOW RATE(CFS) = 20.22
END OF STUDY SUMMARY:
END OF STUDY SUMMARY:
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.69
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.69 EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.69 EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.69 EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.69 EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000 PEAK FLOW RATE(CFS) = 20.22 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.69 EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000 PEAK FLOW RATE(CFS) = 20.22 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.69 EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000 PEAK FLOW RATE(CFS) = 20.22 ** PEAK FLOW RATE TABLE **
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.69 EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000 PEAK FLOW RATE(CFS) = 20.22 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 8.7 TC(MIN.) = 14.69 EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.43 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000 PEAK FLOW RATE(CFS) = 20.22 ** PEAK FLOW RATE TABLE ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE 1 20.22 14.69 3.213 0.43(0.43) 1.00 8.1 1.00

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEBT.DAT

TIME/DATE OF STUDY: 13:02 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2000

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)

SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.

*USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 477.00

ELEVATION DATA: UPSTREAM(FEET) = 7061.00 DOWNSTREAM(FEET) = 7008.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.914
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.517
 SUBAREA To AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Аp
                                          SCS
                                               Tc
                              Fр
                GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 NATURAL FAIR COVER
                                    1.000 77
 "WOODLAND,GRASS"
                   С
                         1.41 0.43
                                               12.91
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 3.91
 TOTAL AREA(ACRES) = 1.41 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 3.91
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HECT.DAT

TIME/DATE OF STUDY: 13:03 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2000

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 362.00

ELEVATION DATA: UPSTREAM(FEET) = 7064.40 DOWNSTREAM(FEET) = 7009.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.847
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.973
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                            Аp
                                                  SCS
                                                      Tc
                                    Fр
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                                          1.000 77
 "WOODLAND,GRASS"
                      С
                             1.25 0.43
                                                      10.85
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 3.98
 TOTAL AREA(ACRES) = 1.25 PEAK FLOW RATE(CFS) =
                                               3.98
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.2 TC(MIN.) = 10.85
EFFECTIVE AREA(ACRES) = 1.25 AREA-AVERAGED Fm(INCH/HR) = 0.43
 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 3.98
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEDT.DAT

TIME/DATE OF STUDY: 13:10 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2000

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)

SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.

*USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 302.00

ELEVATION DATA: UPSTREAM(FEET) = 7064.40 DOWNSTREAM(FEET) = 7037.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.201
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.885
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                            Аp
                                                  SCS
                                                      Tc
                                    Fр
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                                          1.000 77
 "WOODLAND, GRASS"
                      С
                             0.59
                                    0.43
                                                      11.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 1.83
 TOTAL AREA(ACRES) = 0.59 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 0.6 TC(MIN.) = 11.20 EFFECTIVE AREA(ACRES) = 0.59 AREA-AVERAGED Fm(INCH/HR) = 0.43
 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 1.83
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEET.DAT

TIME/DATE OF STUDY: 13:12 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2000

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 805.00

ELEVATION DATA: UPSTREAM(FEET) = 7064.00 DOWNSTREAM(FEET) = 7028.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 19.099
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.674
 SUBAREA To AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Аp
                                          SCS
                                               Tc
                              Fр
                GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 NATURAL FAIR COVER
                                    1.000 77
 "WOODLAND,GRASS"
                   С
                         2.88
                               0.43
                                               19.10
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 5.81
 TOTAL AREA(ACRES) = 2.88 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 5.81
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEFT.DAT

TIME/DATE OF STUDY: 13:20 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2000

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)

SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.

*USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 327.00

ELEVATION DATA: UPSTREAM(FEET) = 7043.00 DOWNSTREAM(FEET) = 7022.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.391
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.620
 SUBAREA To AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Аp
                                           SCS
                                               Tc
                               Fр
                GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 NATURAL FAIR COVER
                                    1.000 77
 "WOODLAND,GRASS"
                   С
                         0.83 0.43
                                               12.39
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 2.38
 TOTAL AREA(ACRES) = 0.83 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 2.38
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEGT.DAT

TIME/DATE OF STUDY: 13:24 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2000

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 993.00

ELEVATION DATA: UPSTREAM(FEET) = 7045.00 DOWNSTREAM(FEET) = 7013.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 22.179
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 2.408
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                           Аp
                                                 SCS
                                                      Tc
                                   Fр
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
 "WOODLAND, GRASS"
                      С
                             1.51 0.43
                                          1.000 77
                                                      22.18
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 2.68
 TOTAL AREA(ACRES) = 1.51 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.5 TC(MIN.) = 22.18
EFFECTIVE AREA(ACRES) = 1.51 AREA-AVERAGED Fm(INCH/HR) = 0.43
 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 2.68
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEHT.DAT

TIME/DATE OF STUDY: 13:21 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2000

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 286.00

ELEVATION DATA: UPSTREAM(FEET) = 7018.00 DOWNSTREAM(FEET) = 7005.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.584
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.581
 SUBAREA To AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                      Аp
                                           SCS
                                               Tc
                               Fр
                GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 NATURAL FAIR COVER
                                    1.000 77
 "WOODLAND, GRASS"
                   С
                         0.24
                               0.43
                                               12.58
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.43
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 0.68
 TOTAL AREA(ACRES) = 0.24
                     PEAK FLOW RATE(CFS) =
                                        0.68
______
 END OF STUDY SUMMARY:
 AREA-AVERAGED Fp(INCH/HR) = 0.43 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 0.68
______
______
```

San Bernardino County

Hydrology & Hydraulics Preliminary Report

EXISTING HYDROLOGY 100-YEAR RUNOFF

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEAH.DAT

TIME/DATE OF STUDY: 12:55 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 2.2000

ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 3.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 675.00

ELEVATION DATA: UPSTREAM(FEET) = 7056.00 DOWNSTREAM(FEET) = 6957.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 14.037
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.082
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                            Ap SCS
                                                       Tс
                                   Fρ
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                                          1.000 92 14.04
 "WOODLAND, GRASS"
                      C
                             1.94 0.19
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.19
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 10.29
 TOTAL AREA(ACRES) = 1.94 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE
                      3.00 TO NODE
                                    3.00 \text{ IS CODE} = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 14.04
 RAINFALL INTENSITY(INCH/HR) = 6.08
 AREA-AVERAGED Fm(INCH/HR) = 0.19
 AREA-AVERAGED Fp(INCH/HR) = 0.19
 AREA-AVERAGED Ap = 1.00
 EFFECTIVE STREAM AREA(ACRES) = 1.94
 TOTAL STREAM AREA(ACRES) = 1.94
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                10.29
************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 21
._____
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 812.00
 ELEVATION DATA: UPSTREAM(FEET) = 7053.00 DOWNSTREAM(FEET) = 6957.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 15.779
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.604
 SUBAREA To AND LOSS RATE DATA(AMC III):
                                   Fp Ap SCS Tc
  DEVELOPMENT TYPE/ SCS SOIL AREA
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                C
 "WOODLAND, GRASS"
                            5.21 0.19
                                           1.000 92 15.78
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.19
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 25.38
                  5.21 PEAK FLOW RATE(CFS) =
 TOTAL AREA(ACRES) =
************************
                     3.00 TO NODE 3.00 IS CODE = 1
 FLOW PROCESS FROM NODE
```

```
>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 15.78
 RAINFALL INTENSITY(INCH/HR) = 5.60
 AREA-AVERAGED Fm(INCH/HR) = 0.19
 AREA-AVERAGED Fp(INCH/HR) = 0.19
 AREA-AVERAGED Ap = 1.00
 EFFECTIVE STREAM AREA(ACRES) = 5.21
 TOTAL STREAM AREA(ACRES) = 5.21
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 25.38
 ** CONFLUENCE DATA **
  STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

      MBER
      (CFS)
      (MIN.)
      (INCIT/IIIC)
      (INCIT/IIIC)

      1
      10.29
      14.04
      6.082
      0.19(0.19)
      1.00
      1.9
      1.00

      2
      25.38
      15.78
      5.604
      0.19(0.19)
      1.00
      5.2
      2.00

 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM Q To Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

      34.86
      14.04
      6.082
      0.19( 0.19)
      1.00
      6.6
      1.00

      34.84
      15.78
      5.604
      0.19( 0.19)
      1.00
      7.2
      2.00

 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 34.86 Tc(MIN.) = 14.04 EFFECTIVE AREA(ACRES) = 6.57 AREA-AVERAGED Fm(INCH/HR) = 0.19
 AREA-AVERAGED Fp(INCH/HR) = 0.19 AREA-AVERAGED Ap = 1.00
 TOTAL AREA(ACRES) = 7.2
 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 3.00 = 812.00 FEET.
******************
 FLOW PROCESS FROM NODE 3.00 TO NODE 4.00 IS CODE = 53
______
 >>>>COMPUTE NATURAL MOUNTAIN CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA<
______
 ELEVATION DATA: UPSTREAM(FEET) = 6957.00 DOWNSTREAM(FEET) = 6940.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 176.00 CHANNEL SLOPE = 0.0966
 SLOPE ADJUSTMENT CURVE USED:
 EFFECTIVE SLOPE = .0966 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
 CHANNEL FLOW THRU SUBAREA(CFS) = 34.86
 FLOW VELOCITY(FEET/SEC) = 5.68 (PER LACFCD/RCFC&WCD HYDROLOGY MANUAL)
 TRAVEL TIME(MIN.) = 0.52 Tc(MIN.) = 14.55
 LONGEST FLOWPATH FROM NODE 2.00 TO NODE 4.00 = 988.00 FEET.
*******************
 FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81
    _____
```

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<

MAINLINE Tc(MIN.) = 14.55
* 100 YEAR RAINFALL INTENSITY(INCH/HR) = 5.930
SUBAREA LOSS RATE DATA(AMC III):
DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS
LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN
NATURAL FAIR COVER
"WOODLAND, GRASS" C 1.51 0.19 1.000 92
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.19
SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
SUBAREA AREA(ACRES) = 1.51 SUBAREA RUNOFF(CFS) = 7.80
EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR) = 0.19
AREA-AVERAGED Fp(INCH/HR) = 0.19 AREA-AVERAGED Ap = 1.00
TOTAL AREA(ACRES) = 8.7 PEAK FLOW RATE(CFS) = 41.77
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = $8.7 \text{ TC(MIN.)} = 14.55$
EFFECTIVE AREA(ACRES) = 8.08 AREA-AVERAGED Fm(INCH/HR)= 0.19
AREA-AVERAGED $fp(INCH/HR) = 0.19$ AREA-AVERAGED $Ap = 1.000$
PEAK FLOW RATE(CFS) = 41.77
** PEAK FLOW RATE TABLE **
STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 41.77 14.55 5.930 0.19(0.19) 1.00 8.1 1.00
2 41.22 16.30 5.479 0.19(0.19) 1.00 8.7 2.00

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEBH.DAT

TIME/DATE OF STUDY: 13:00 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 2.2000

ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 477.00

ELEVATION DATA: UPSTREAM(FEET) = 7061.00 DOWNSTREAM(FEET) = 7008.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.914
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.447
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                            Aр
                                                  SCS
                                                       Tc
                                    Fр
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                                            1.000 92
 "WOODLAND, GRASS"
                      С
                             1.41
                                    0.19
                                                       12.91
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.19
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 7.94
 TOTAL AREA(ACRES) = 1.41 PEAK FLOW RATE(CFS) =
                                              7.94
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.4 TC(MIN.) = 12.91
EFFECTIVE AREA(ACRES) = 1.41 AREA-AVERAGED Fm(INCH/HR) = 0.19
 AREA-AVERAGED Fp(INCH/HR) = 0.19 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 7.94
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HECH.DAT

TIME/DATE OF STUDY: 13:01 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 2.2000

ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 362.00

ELEVATION DATA: UPSTREAM(FEET) = 7064.40 DOWNSTREAM(FEET) = 7009.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 10.847
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 7.284
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                            Аp
                                                  SCS
                                                       Tc
                                    Fр
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                                            1.000 92
 "WOODLAND, GRASS"
                      С
                             1.25
                                    0.19
                                                       10.85
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.19
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 7.98
 TOTAL AREA(ACRES) = 1.25
                         PEAK FLOW RATE(CFS) =
                                              7.98
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.2 TC(MIN.) = 10.85
EFFECTIVE AREA(ACRES) = 1.25 AREA-AVERAGED Fm(INCH/HR) = 0.19
 AREA-AVERAGED Fp(INCH/HR) = 0.19 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 7.98
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEDH.DAT

TIME/DATE OF STUDY: 13:09 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 2.2000

ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 302.00

ELEVATION DATA: UPSTREAM(FEET) = 7064.40 DOWNSTREAM(FEET) = 7037.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.201
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 7.123
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                            Аp
                                                  SCS
                                                      Tc
                                    Fр
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                                            1.000 92
 "WOODLAND, GRASS"
                      С
                             0.59
                                    0.19
                                                      11.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.19
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 3.68
 TOTAL AREA(ACRES) = 0.59 PEAK FLOW RATE(CFS) =
                                              3.68
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 0.6 TC(MIN.) = 11.20 EFFECTIVE AREA(ACRES) = 0.59 AREA-AVERAGED Fm(INCH/HR)= 0.19
 AREA-AVERAGED Fp(INCH/HR) = 0.19 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 3.68
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEEH.DAT

TIME/DATE OF STUDY: 13:12 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 2.2000

ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 805.00

ELEVATION DATA: UPSTREAM(FEET) = 7064.00 DOWNSTREAM(FEET) = 7028.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 19.099
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.902
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                            Аp
                                                  SCS
                                                       Tc
                                    Fр
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                                            1.000 92
 "WOODLAND, GRASS"
                      С
                             2.88
                                     0.19
                                                       19.10
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.19
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 12.21
 TOTAL AREA(ACRES) = 2.88 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 2.9 TC(MIN.) = 19.10
EFFECTIVE AREA(ACRES) = 2.88 AREA-AVERAGED Fm(INCH/HR) = 0.19
 AREA-AVERAGED Fp(INCH/HR) = 0.19 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 12.21
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEFH.DAT

TIME/DATE OF STUDY: 13:16 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 2.2000

ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 327.00

ELEVATION DATA: UPSTREAM(FEET) = 7043.00 DOWNSTREAM(FEET) = 7022.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.391
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.637
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                  SCS
                                                       Tc
                                    Fр
                                            Aр
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                                            1.000 92
 "WOODLAND, GRASS"
                      С
                             0.83
                                    0.19
                                                       12.39
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.19
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 4.82
 TOTAL AREA(ACRES) = 0.83 PEAK FLOW RATE(CFS) =
                                              4.82
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 0.8 TC(MIN.) = 12.39
EFFECTIVE AREA(ACRES) = 0.83 AREA-AVERAGED Fm(INCH/HR) = 0.19
 AREA-AVERAGED Fp(INCH/HR) = 0.19 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 4.82
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEGH.DAT

TIME/DATE OF STUDY: 13:17 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 2.2000

ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 993.00

ELEVATION DATA: UPSTREAM(FEET) = 7045.00 DOWNSTREAM(FEET) = 7013.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 22.179
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 4.415
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                            Аp
                                                  SCS
                                                      Tc
                                    Fр
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 NATURAL FAIR COVER
                                            1.000 92
 "WOODLAND, GRASS"
                      С
                             1.51
                                    0.19
                                                      22.18
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.19
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 5.74
 TOTAL AREA(ACRES) = 1.51 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.5 TC(MIN.) = 22.18
EFFECTIVE AREA(ACRES) = 1.51 AREA-AVERAGED Fm(INCH/HR) = 0.19
 AREA-AVERAGED Fp(INCH/HR) = 0.19 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 5.74
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HEHH.DAT

TIME/DATE OF STUDY: 13:18 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 2.2000

ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 286.00

ELEVATION DATA: UPSTREAM(FEET) = 7018.00 DOWNSTREAM(FEET) = 7005.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.584
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.565
 SUBAREA To AND LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                           SCS
                                               Tc
                               Fр
                                      Aр
                 GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
 NATURAL FAIR COVER
                                      1.000 92
 "WOODLAND,GRASS"
                   С
                         0.24
                               0.19
                                               12.58
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.19
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 1.000
 SUBAREA RUNOFF(CFS) = 1.38
 TOTAL AREA(ACRES) = 0.24 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 AREA-AVERAGED Fp(INCH/HR) = 0.19 AREA-AVERAGED Ap = 1.000
 PEAK FLOW RATE(CFS) = 1.38
______
______
```

San Bernardino County

Hydrology & Hydraulics Preliminary Report

PROPOSED HYDROLOGY 2-YEAR RUNOFF

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPA2.DAT

TIME/DATE OF STUDY: 14:37 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.6930

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 400.00

ELEVATION DATA: UPSTREAM(FEET) = 7035.70 DOWNSTREAM(FEET) = 7031.50

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.199
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.000
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Ap SCS Tc
                                 Fρ
    LAND USE
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 PUBLIC PARK
                  C 1.64 0.57 0.850 69 13.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 2.24
 TOTAL AREA(ACRES) = 1.64 PEAK FLOW RATE(CFS) = 2.24
********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 4.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 7028.50 DOWNSTREAM(FEET) = 7016.00
 FLOW LENGTH(FEET) = 534.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 6.30
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 1.41 Tc(MIN.) = 14.61
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                    4.00 =
                                            934.00 FEET.
********************
 FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81
   -----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 14.61
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.863
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                               Fp Ap SCS
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
                  С
                         0.48 0.57
 PUBLIC PARK
                                       0.850 69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 0.48 SUBAREA RUNOFF(CFS) = 0.60
 EFFECTIVE AREA(ACRES) = 2.12 AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) =
                    2.1
                           PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 4.00 TO NODE
                                  5.00 \text{ IS CODE} = 31
._____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 7016.00 DOWNSTREAM(FEET) = 7012.50
 FLOW LENGTH(FEET) = 28.00 MANNING'S N = 0.013
```

```
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.97
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.64
 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 14.65
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 962.00 FEET.
******************
 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 14.65
 RAINFALL INTENSITY(INCH/HR) = 1.86
 AREA-AVERAGED fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57
 AREA-AVERAGED Ap = 0.85
 EFFECTIVE STREAM AREA(ACRES) = 2.12
 TOTAL STREAM AREA(ACRES) = 2.12
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
******************
 FLOW PROCESS FROM NODE 3.00 TO NODE
                                  5.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 375.00
 ELEVATION DATA: UPSTREAM(FEET) = 7019.00 DOWNSTREAM(FEET) = 7015.50
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.169
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.003
 SUBAREA To AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                               Fp Ap SCS Tc
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
                   С
                          1.46 0.57
                                       0.850 69 13.17
 PUBLIC PARK
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 2.00
 TOTAL AREA(ACRES) =
                  1.46 PEAK FLOW RATE(CFS) = 2.00
************************
 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.17
 RAINFALL INTENSITY(INCH/HR) = 2.00
```

Maple Hills Fields Complex Proposed 2-year Hydrology – Area A Page **3** of **10**

```
AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57
 AREA-AVERAGED Ap = 0.85
 EFFECTIVE STREAM AREA(ACRES) = 1.46
 TOTAL STREAM AREA(ACRES) = 1.46
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                       2.00
 ** CONFLUENCE DATA **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

    2.64
    14.65
    1.859
    0.57( 0.48) 0.85
    2.1
    1.00

    2.00
    13.17
    2.003
    0.57( 0.48) 0.85
    1.5
    3.00

 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
  NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

      4.62
      13.17
      2.003
      0.57( 0.48) 0.85
      3.4
      3.00

      4.45
      14.65
      1.859
      0.57( 0.48) 0.85
      3.6
      1.00

 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 4.62 Tc(MIN.) = 13.17

EFFECTIVE AREA(ACRES) = 3.37 AREA-AVERAGED Fm(INCH/HR) = 0.48

AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 3.6
 LONGEST FLOWPATH FROM NODE
                              1.00 TO NODE
                                               5.00 = 962.00 FEET.
*********************
 FLOW PROCESS FROM NODE 5.00 TO NODE 8.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 7012.50 DOWNSTREAM(FEET) = 7004.50
 FLOW LENGTH(FEET) = 48.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 15.63
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.62
 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 13.22
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 = 1010.00 FEET.
************************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.22
 RAINFALL INTENSITY(INCH/HR) = 2.00
 AREA-AVERAGED Fm(INCH/HR) = 0.48
```

Maple Hills Fields Complex Proposed 2-year Hydrology – Area A Page **4** of **10**

```
AREA-AVERAGED Fp(INCH/HR) = 0.57
 AREA-AVERAGED Ap = 0.85
 EFFECTIVE STREAM AREA(ACRES) = 3.37
 TOTAL STREAM AREA(ACRES) = 3.58
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*****************
 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 346.00
 ELEVATION DATA: UPSTREAM(FEET) = 7035.70 DOWNSTREAM(FEET) = 7032.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.409
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.088
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS Tc
                GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
C 1.50 0.57 0.850 69 12.41
     LAND USE
 PUBLIC PARK
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 2.17
TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 2.17
*************************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 7029.00 DOWNSTREAM(FEET) = 7004.50
 FLOW LENGTH(FEET) = 225.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.1 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.77
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 2.17
 PIPE TRAVEL TIME (MIN.) = 0.35 Tc(MIN.) = 12.76
 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 8.00 = 571.00 FEET.
******************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.76
 RAINFALL INTENSITY(INCH/HR) = 2.05
 AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57
```

Maple Hills Fields Complex Proposed 2-year Hydrology – Area A Page **5** of **10**

```
AREA-AVERAGED Ap = 0.85
  EFFECTIVE STREAM AREA(ACRES) = 1.50
  TOTAL STREAM AREA(ACRES) = 1.50
  PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.17
  ** CONFLUENCE DATA **
   STREAM Q To Intensity Fp(Fm) Ap Ae HEADWATER

      NUMBER
      (CFS)
      (MIN.)
      (INCH/HR)
      (INCH/HR)
      (ACRES)
      NODE

      1
      4.62
      13.22
      1.998
      0.57( 0.48)
      0.85
      3.4
      3.00

      1
      4.45
      14.70
      1.855
      0.57( 0.48)
      0.85
      3.6
      1.00

               2.17 12.76 2.048 0.57(0.48)0.85
                                                                1.5
  RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
  CONFLUENCE FORMULA USED FOR 2 STREAMS.
  ** PEAK FLOW RATE TABLE **
  STREAM Q To Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

      6.77
      12.76
      2.048
      0.57( 0.48) 0.85
      4.7
      6.00

      6.72
      13.22
      1.998
      0.57( 0.48) 0.85
      4.9
      3.00

      6.35
      14.70
      1.855
      0.57( 0.48) 0.85
      5.1
      1.00

  COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 6.77 Tc(MIN.) = 12.76

EFFECTIVE AREA(ACRES) = 4.75 AREA-AVERAGED Fm(INCH/HR) = 0.48

AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.85
  TOTAL AREA(ACRES) = 5.1
  LONGEST FLOWPATH FROM NODE
                                   1.00 TO NODE
                                                      8.00 = 1010.00 FEET.
*********************
  FLOW PROCESS FROM NODE 8.00 TO NODE 12.00 IS CODE = 51
  >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
  >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 7004.50 DOWNSTREAM(FEET) = 6994.40
  CHANNEL LENGTH THRU SUBAREA(FEET) = 175.00 CHANNEL SLOPE = 0.0577
  CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
  CHANNEL FLOW THRU SUBAREA(CFS) = 6.77
  FLOW VELOCITY(FEET/SEC.) = 9.08 FLOW DEPTH(FEET) = 0.50
  TRAVEL TIME(MIN.) = 0.32 Tc(MIN.) = 13.08
  LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 = 1185.00 FEET.
************************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE =
  >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
  TOTAL NUMBER OF STREAMS = 2
  CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
  TIME OF CONCENTRATION(MIN.) = 13.08
 RAINFALL INTENSITY(INCH/HR) = 2.01
  AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57
```

Maple Hills Fields Complex Proposed 2-year Hydrology – Area A Page **6** of **10**

```
AREA-AVERAGED Ap = 0.85
 EFFECTIVE STREAM AREA(ACRES) = 4.75
 TOTAL STREAM AREA(ACRES) = 5.08
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.77
********************
 FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 624.00
 ELEVATION DATA: UPSTREAM(FEET) = 7043.10 DOWNSTREAM(FEET) = 7015.50
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.827
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.160
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS Tc
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
                          2.05 0.57
 PUBLIC PARK
                   С
                                        0.850 69 11.83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 3.10
TOTAL AREA(ACRES) = 2.05 PEAK FLOW RATE(CFS) = 3.10
*******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 7012.50 DOWNSTREAM(FEET) = 7002.50
 FLOW LENGTH(FEET) = 372.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.28
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 3.10
 PIPE TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) = 12.68
 LONGEST FLOWPATH FROM NODE 9.00 TO NODE
                                    11.00 = 996.00 FEET.
FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 7002.50 DOWNSTREAM(FEET) = 6994.40
 CHANNEL LENGTH THRU SUBAREA(FEET) = 98.00 CHANNEL SLOPE = 0.0827
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 3.10
 FLOW VELOCITY(FEET/SEC.) = 8.52 FLOW DEPTH(FEET) = 0.35
 TRAVEL TIME (MIN.) = 0.19 Tc(MIN.) = 12.87
```

Maple Hills Fields Complex Proposed 2-year Hydrology – Area A Page **7** of **10**

LONGEST FLOWPATH FROM NODE 9.00 TO NODE 12.00 = 1094.00 FEET. ****************** 12.00 TO NODE FLOW PROCESS FROM NODE 12.00 IS CODE = 1______ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <--->>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< ______ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.87 RAINFALL INTENSITY(INCH/HR) = 2.04

AREA-AVERAGED Fm(INCH/HR) = 0.48

AREA-AVERAGED Fp(INCH/HR) = 0.57

AREA-AVERAGED Ap = 0.85

EFFECTIVE STREAM AREA(ACRES) = 2.05

TOTAL STREAM AREA(ACRES) = 2.05

PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.10

** CONFLUENCE DATA **

STREAM	Q	Tc	Intensity	Fp(Fm)	Аp	Ae	HEADWATER
NUMBER	(CFS)	(MIN.)	(INCH/HR)	(INCH/HR)		(ACRES)	NODE
1	6.77	13.08	2.013	0.57(0.48)	0.85	4.7	6.00
1	6.72	13.54	1.964	0.57(0.48)	0.85	4.9	3.00
1	6.35	15.03	1.827	0.57(0.48)	0.85	5.1	1.00
2	3.10	12.87	2.036	0.57(0.48)	0.85	2.0	9.00

RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS.

** PEAK FLOW RATE TABLE **

STREAM	Q	Tc	Intensity	Fp(Fm)	Аp	Ae	HEADWATER
NUMBER	(CFS)	(MIN.)	(INCH/HR)	(INCH/HR)		(ACRES)	NODE
1	9.86	12.87	2.036	0.57(0.48)	0.85	6.7	9.00
2	9.83	13.08	2.013	0.57(0.48)	0.85	6.8	6.00
3	9.67	13.54	1.964	0.57(0.48)	0.85	6.9	3.00
4	9.03	15.03	1.827	0.57(0.48)	0.85	7.1	1.00

COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:

PEAK FLOW RATE(CFS) = 9.86 Tc(MIN.) = 12.87 EFFECTIVE AREA(ACRES) = 6.72 AREA-AVERAGED Fm(INCH/HR) = 0.48

AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.85

TOTAL AREA(ACRES) = 7.1

LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 = 1185.00 FEET.

FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81

>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<

MAINLINE Tc(MIN.) = 12.87

2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.036

SUBAREA LOSS RATE DATA(AMC II):

DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE

> Maple Hills Fields Complex Proposed 2-year Hydrology – Area A Page 8 of 10

```
0.45 0.57 0.850 69
 PUBLIC PARK
                      С
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 0.45 SUBAREA RUNOFF(CFS) = 0.63
 EFFECTIVE AREA(ACRES) = 7.17 AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 7.6 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 6994.40 DOWNSTREAM(FEET) = 6940.00
 FLOW LENGTH(FEET) = 133.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 26.91
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 10.04
 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 12.95
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 13.00 = 1318.00 FEET.
******************
 FLOW PROCESS FROM NODE
                      13.00 TO NODE
                                    13.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.95
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.027
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
                                                  SCS
     LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN C PARK C 1.66 0.57 0.850 69
 PUBLIC PARK
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 1.66 SUBAREA RUNOFF(CFS) = 2.31
 TOTAL AREA(ACRES) = 9.2 PEAK FLOW RATE(CFS) = 12.29
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 9.2 TC(MIN.) = 12.95
EFFECTIVE AREA(ACRES) = 8.83 AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.850
 PEAK FLOW RATE(CFS) = 12.29
 ** PEAK FLOW RATE TABLE **
                                            Ae HEADWATER
  STREAM Q Tc Intensity Fp(Fm) Ap
  NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 12.29 12.95 2.027 0.57(0.48) 0.85 8.8 9.00
2 12.21 13.16 2.004 0.57(0.48) 0.85 8.9 6.00
3 11.98 13.63 1.956 0.57(0.48) 0.85 9.0 3.00
4 11.13 15.11 1.819 0.57(0.48) 0.85 9.2 1.00
```

Maple Hills Fields Complex Proposed 2-year Hydrology – Area A Page **9** of **10** ______

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPB2.DAT

TIME/DATE OF STUDY: 14:46 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.6930

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 353.00

ELEVATION DATA: UPSTREAM(FEET) = 7035.70 DOWNSTREAM(FEET) = 7032.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.559
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.071
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                          Ap SCS
                                  Fρ
     LAND USE
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 PUBLIC PARK
                   C 1.41 0.57
                                          0.850 69 12.56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 2.02
 TOTAL AREA(ACRES) = 1.41 PEAK FLOW RATE(CFS) = 2.02
********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 7029.00 DOWNSTREAM(FEET) = 7008.00
 FLOW LENGTH(FEET) = 69.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 2.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 15.12
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  2.02
 PIPE TRAVEL TIME(MIN.) = 0.08 Tc(MIN.) = 12.64
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                     3.00 =
                                              422.00 FEET.
***********************
 FLOW PROCESS FROM NODE 3.00 TO NODE
                                   3.00 \text{ IS CODE} = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.64
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.062
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                Fp
                                                SCS
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                          0.06 0.57
 PUBLIC PARK
                   С
                                        0.850
                                                 69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 0.06 SUBAREA RUNOFF(CFS) = 0.09
 EFFECTIVE AREA(ACRES) = 1.47 AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 1.5 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.5 TC(MIN.) = 12.64
EFFECTIVE AREA(ACRES) = 1.47 AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.850
 PEAK FLOW RATE(CFS) = 2.09
______
 _____
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPC2.DAT

TIME/DATE OF STUDY: 14:48 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.6930

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 360.00

ELEVATION DATA: UPSTREAM(FEET) = 7035.70 DOWNSTREAM(FEET) = 7032.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.708
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.054
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                          Ap SCS
                                  Fρ
     LAND USE
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 PUBLIC PARK
                   C 1.62 0.57
                                          0.850 69 12.71
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 2.29
 TOTAL AREA(ACRES) = 1.62 PEAK FLOW RATE(CFS) = 2.29
********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 7029.00 DOWNSTREAM(FEET) = 7010.00
 FLOW LENGTH(FEET) = 281.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.25
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 13.21
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                     3.00 =
                                              641.00 FEET.
***********************
 FLOW PROCESS FROM NODE 3.00 TO NODE
                                   3.00 \text{ IS CODE} = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 13.21
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 1.999
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                Fp
                                                SCS
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                          0.13 0.57
 PUBLIC PARK
                   С
                                        0.850
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.18
 EFFECTIVE AREA(ACRES) = 1.75 AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 1.8 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.8 TC(MIN.) = 13.21
EFFECTIVE AREA(ACRES) = 1.75 AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.850
 PEAK FLOW RATE(CFS) = 2.39
______
 _____
 END OF RATIONAL METHOD ANALYSIS
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPD2.DAT

TIME/DATE OF STUDY: 14:50 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.6930

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 409.00

ELEVATION DATA: UPSTREAM(FEET) = 7062.00 DOWNSTREAM(FEET) = 7037.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.363
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.544
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                    SCS SOIL
                            AREA
                                            Αр
                                                  SCS
                                                       Tc
                                    Fρ
     LAND USE
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 PUBLIC PARK
                      C
                             0.36
                                    0.57
                                            0.850 69
                                                      9.36
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 0.67
 TOTAL AREA(ACRES) = 0.36
                          PEAK FLOW RATE(CFS) = 0.67
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
                        0.4 \text{ TC}(MIN.) =
                                          9.36
 TOTAL AREA(ACRES) = 0.4 TC(MIN.) = 9.36
EFFECTIVE AREA(ACRES) = 0.36 AREA-AVERAGED Fm(INCH/HR)= 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.850
 PEAK FLOW RATE(CFS) =
                       0.67
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc.
37 East Olive Avenue, Suite C
Redlands, CA 92373
(909) 793-2257

FILE NAME: 0193HPE2.DAT

TIME/DATE OF STUDY: 14:56 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.6930

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 581.00

ELEVATION DATA: UPSTREAM(FEET) = 7035.00 DOWNSTREAM(FEET) = 7028.80

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.614
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.497
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                  SCS
                                                        Tc
                                    Fρ
                                             Aр
     LAND USE
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 COMMERCIAL
                     С
                             1.38 0.57
                                             0.100 69 9.61
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 3.03
 TOTAL AREA(ACRES) = 1.38 PEAK FLOW RATE(CFS) = 3.03
********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 7028.80 DOWNSTREAM(FEET) = 7027.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 224.00 CHANNEL SLOPE = 0.0080
 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.195
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                            AREA
                                                   SCS
                                    Fρ
                                              Дp
     LAND USE
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 PUBLIC PARK
                     С
                           0.57 0.57
                                           0.850
                                                    69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.92
 AVERAGE FLOW DEPTH(FEET) = 0.46 TRAVEL TIME(MIN.) = 1.94
 Tc(MIN.) = 11.56
 SUBAREA AREA(ACRES) = 0.57 SUBAREA RUNOFF(CFS) = 0.88 EFFECTIVE AREA(ACRES) = 1.95 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.32
 TOTAL AREA(ACRES) = 2.0 PEAK FLOW RATE(CFS) = 3.54
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.47 FLOW VELOCITY(FEET/SEC.) = 1.92
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 805.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 2.0 TC(MIN.) = 11.56
EFFECTIVE AREA(ACRES) = 1.95 AREA-AVERAGED Fm(INCH/HR) = 0.18
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.319
 PEAK FLOW RATE(CFS) = 3.54
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPF2.DAT

TIME/DATE OF STUDY: 15:11 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.6930

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 406.00

ELEVATION DATA: UPSTREAM(FEET) = 7043.20 DOWNSTREAM(FEET) = 7024.10

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.191
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 3.398
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                   SCS
                                                         Tc
                                     Fρ
                                              Дp
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
                     C
                            0.27 0.57 0.100 69 6.19
 COMMERCIAL
 NATURAL FAIR COVER
                 С
                              0.23 0.43 1.000 77 14.38
 "WOODLAND,GRASS"
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.45
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.514
 SUBAREA RUNOFF(CFS) = 1.43
 TOTAL AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) = 1.43
************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 7024.10 DOWNSTREAM(FEET) = 7022.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 177.00 CHANNEL SLOPE = 0.0119
 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.891
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                     Fp
                                                    SCS
                                              Αр
     LAND USE
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 PUBLIC PARK
                             0.57 0.57
                                            0.850 69
                     С
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.84
 AVERAGE FLOW DEPTH(FEET) = 0.31 TRAVEL TIME(MIN.) = 1.61
 Tc(MIN.) =
            7.80
 SUBAREA AREA(ACRES) = 0.57 SUBAREA RUNOFF(CFS) = 1.24 EFFECTIVE AREA(ACRES) = 1.07 AREA-AVERAGED Fm(INCH/HR) = 0.36
 AREA-AVERAGED Fp(INCH/HR) = 0.53 AREA-AVERAGED Ap = 0.69
 TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 2.43
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.34 FLOW VELOCITY(FEET/SEC.) = 1.96
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 583.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.1 TC(MIN.) = 7.80
EFFECTIVE AREA(ACRES) = 1.07 AREA-AVERAGED Fm(INCH/HR)= 0.36
 AREA-AVERAGED Fp(INCH/HR) = 0.53 AREA-AVERAGED Ap = 0.693
 PEAK FLOW RATE(CFS) = 2.43
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPG2.DAT

TIME/DATE OF STUDY: 15:12 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.6930

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 990.00

ELEVATION DATA: UPSTREAM(FEET) = 7044.70 DOWNSTREAM(FEET) = 7012.40

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.515
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 2.515
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                          Аp
                                                SCS
                                                    Tc
                                  Fр
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 COMMERCIAL
                           0.40
                                  0.57
                                         0.100 69 9.52
 NATURAL FAIR COVER
                            1.11
                                   0.43
                                        1.000 77 22.10
 "WOODLAND,GRASS"
                     С
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.44
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.762
 SUBAREA RUNOFF(CFS) = 2.96
 TOTAL AREA(ACRES) = 1.51 PEAK FLOW RATE(CFS) = 2.96
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                      1.5 \text{ TC}(MIN.) =
                                       9.52
 EFFECTIVE AREA(ACRES) = 1.51 AREA-AVERAGED Fm(INCH/HR) = 0.33
 AREA-AVERAGED Fp(INCH/HR) = 0.44 AREA-AVERAGED Ap = 0.762
 PEAK FLOW RATE(CFS) =
                      2.96
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPH2.DAT

TIME/DATE OF STUDY: 15:14 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 0.6930

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 266.00

ELEVATION DATA: UPSTREAM(FEET) = 7019.00 DOWNSTREAM(FEET) = 7005.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.112
    2 YEAR RAINFALL INTENSITY(INCH/HR) = 3.885
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                          Аp
                                               SCS
                                                    Tc
                                  Fр
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 COMMERCIAL
                           0.13
                                  0.57
                                         0.100 69 5.11
 NATURAL FAIR COVER
                            0.11
                                   0.43
                                          1.000 77 11.87
 "WOODLAND,GRASS"
                     С
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.45
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.512
 SUBAREA RUNOFF(CFS) = 0.79
 TOTAL AREA(ACRES) = 0.24 PEAK FLOW RATE(CFS) = 0.79
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                      0.2 TC(MIN.) =
                                       5.11
 EFFECTIVE AREA(ACRES) = 0.24 AREA-AVERAGED Fm(INCH/HR) = 0.23
 AREA-AVERAGED Fp(INCH/HR) = 0.45 AREA-AVERAGED Ap = 0.512
 PEAK FLOW RATE(CFS) = 0.79
______
______
```

San Bernardino County

Hydrology & Hydraulics Preliminary Report

PROPOSED HYDROLOGY 10-YEAR RUNOFF

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPAT.DAT

TIME/DATE OF STUDY: 15:17 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2000

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 400.00

ELEVATION DATA: UPSTREAM(FEET) = 7035.70 DOWNSTREAM(FEET) = 7031.50

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.199
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.464
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Ap SCS Tc
                                 Fρ
    LAND USE
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 PUBLIC PARK
                  C 1.64 0.57 0.850 69 13.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 4.40
 TOTAL AREA(ACRES) = 1.64 PEAK FLOW RATE(CFS) =
********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 4.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 7028.50 DOWNSTREAM(FEET) = 7016.00
 FLOW LENGTH(FEET) = 534.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 7.64
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.40
 PIPE TRAVEL TIME(MIN.) = 1.16 Tc(MIN.) = 14.36
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                    4.00 =
                                             934.00 FEET.
********************
 FLOW PROCESS FROM NODE 4.00 TO NODE
                                  4.00 \text{ IS CODE} = 81
   -----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 14.36
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.264
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                               Fp Ap SCS
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
                  С
                         0.48 0.57
 PUBLIC PARK
                                       0.850 69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 0.48 SUBAREA RUNOFF(CFS) = 1.20
 EFFECTIVE AREA(ACRES) = 2.12 AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) =
                    2.1
                           PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 4.00 TO NODE
                                  5.00 \text{ IS CODE} = 31
._____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 7016.00 DOWNSTREAM(FEET) = 7012.50
 FLOW LENGTH(FEET) = 28.00 MANNING'S N = 0.013
```

```
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 14.70
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 5.31
 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 14.40
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 962.00 FEET.
******************
 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <> < <
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 14.40
 RAINFALL INTENSITY(INCH/HR) = 3.26
 AREA-AVERAGED fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57
 AREA-AVERAGED Ap = 0.85
 EFFECTIVE STREAM AREA(ACRES) = 2.12
 TOTAL STREAM AREA(ACRES) = 2.12
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*****************
 FLOW PROCESS FROM NODE 3.00 TO NODE
                                  5.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 375.00
 ELEVATION DATA: UPSTREAM(FEET) = 7019.00 DOWNSTREAM(FEET) = 7015.50
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.169
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.469
 SUBAREA To AND LOSS RATE DATA(AMC II):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                               Fp Ap SCS Tc
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
                   С
                          1.46 0.57
                                       0.850 69 13.17
 PUBLIC PARK
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 3.93
 TOTAL AREA(ACRES) =
                  1.46 PEAK FLOW RATE(CFS) = 3.93
************************
 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.17
 RAINFALL INTENSITY(INCH/HR) = 3.47
```

Maple Hills Fields Complex Proposed 10-year Hydrology – Area A Page **3** of **10**

```
AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57
 AREA-AVERAGED Ap = 0.85
 EFFECTIVE STREAM AREA(ACRES) = 1.46
 TOTAL STREAM AREA(ACRES) = 1.46
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                       3.93
 ** CONFLUENCE DATA **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

    5.31
    14.40
    3.259
    0.57( 0.48) 0.85
    2.1
    1.00

    3.93
    13.17
    3.469
    0.57( 0.48) 0.85
    1.5
    3.00

 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM Q To Intensity Fp(Fm) Ap Ae HEADWATER
  NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

      9.15
      13.17
      3.469
      0.57( 0.48) 0.85
      3.4
      3.00

      8.96
      14.40
      3.259
      0.57( 0.48) 0.85
      3.6
      1.00

 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 9.15 Tc(MIN.) = 13.17

EFFECTIVE AREA(ACRES) = 3.40 AREA-AVERAGED Fm(INCH/HR) = 0.48

AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 3.6
 LONGEST FLOWPATH FROM NODE
                              1.00 TO NODE
                                               5.00 = 962.00 FEET.
*******************
 FLOW PROCESS FROM NODE 5.00 TO NODE 8.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 7012.50 DOWNSTREAM(FEET) = 7004.50
 FLOW LENGTH(FEET) = 48.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.7 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 19.01
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 9.15
 PIPE TRAVEL TIME(MIN.) = 0.04 Tc(MIN.) = 13.21
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 = 1010.00 FEET.
************************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.21
 RAINFALL INTENSITY(INCH/HR) = 3.46
 AREA-AVERAGED Fm(INCH/HR) = 0.48
```

Maple Hills Fields Complex Proposed 10-year Hydrology – Area A Page **4** of **10**

```
AREA-AVERAGED Fp(INCH/HR) = 0.57
 AREA-AVERAGED Ap = 0.85
 EFFECTIVE STREAM AREA(ACRES) = 3.40
 TOTAL STREAM AREA(ACRES) = 3.58
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*****************
 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 346.00
 ELEVATION DATA: UPSTREAM(FEET) = 7035.70 DOWNSTREAM(FEET) = 7032.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.409
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.616
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS Tc
                GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
C 1.50 0.57 0.850 69 12.41
     LAND USE
 PUBLIC PARK
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 4.23
TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 4.23
************************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 7029.00 DOWNSTREAM(FEET) = 7004.50
 FLOW LENGTH(FEET) = 225.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.09
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 4.23
 PIPE TRAVEL TIME (MIN.) = 0.29 Tc(MIN.) = 12.70
 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 8.00 = 571.00 FEET.
*******************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.70
 RAINFALL INTENSITY(INCH/HR) = 3.56
 AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57
```

Maple Hills Fields Complex Proposed 10-year Hydrology – Area A Page **5** of **10**

```
AREA-AVERAGED Ap = 0.85
  EFFECTIVE STREAM AREA(ACRES) = 1.50
  TOTAL STREAM AREA(ACRES) = 1.50
  PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                               4.23
  ** CONFLUENCE DATA **
   STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
   NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
1 9.15 13.21 3.461 0.57( 0.48) 0.85 3.4 3.00
1 8.96 14.44 3.253 0.57( 0.48) 0.85 3.6 1.00
               4.23 12.70 3.559 0.57(0.48) 0.85
                                                                  1.5
  RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
  CONFLUENCE FORMULA USED FOR 2 STREAMS.
  ** PEAK FLOW RATE TABLE **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        13.31
        12.70
        3.559
        0.57( 0.48)
        0.85
        4.8
        6.00

        2
        13.25
        13.21
        3.461
        0.57( 0.48)
        0.85
        4.9
        3.00

        3
        12.77
        14.44
        3.253
        0.57( 0.48)
        0.85
        5.1
        1.00

  COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
  PEAK FLOW RATE(CFS) = 13.31 Tc(MIN.) = 12.70
EFFECTIVE AREA(ACRES) = 4.77 AREA-AVERAGED Fm(INCH/HR) = 0.48
  AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.85
  TOTAL AREA(ACRES) = 5.1
  LONGEST FLOWPATH FROM NODE
                                    1.00 TO NODE
                                                        8.00 = 1010.00 FEET.
*******************
  FLOW PROCESS FROM NODE 8.00 TO NODE 12.00 IS CODE = 51
  >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
  >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
  ELEVATION DATA: UPSTREAM(FEET) = 7004.50 DOWNSTREAM(FEET) = 6994.40
  CHANNEL LENGTH THRU SUBAREA(FEET) = 175.00 CHANNEL SLOPE = 0.0577
  CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 3.000
  MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
  CHANNEL FLOW THRU SUBAREA(CFS) = 13.31
  FLOW VELOCITY(FEET/SEC.) = 10.71 FLOW DEPTH(FEET) = 0.64
  TRAVEL TIME(MIN.) = 0.27 Tc(MIN.) = 12.97
  LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 = 1185.00 FEET.
************************
  FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE =
  >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
  TOTAL NUMBER OF STREAMS = 2
  CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
  TIME OF CONCENTRATION(MIN.) = 12.97
  RAINFALL INTENSITY(INCH/HR) = 3.51
  AREA-AVERAGED Fm(INCH/HR) = 0.48
  AREA-AVERAGED Fp(INCH/HR) = 0.57
```

Maple Hills Fields Complex Proposed 10-year Hydrology – Area A Page **6** of **10**

```
AREA-AVERAGED Ap = 0.85
 EFFECTIVE STREAM AREA(ACRES) = 4.77
 TOTAL STREAM AREA(ACRES) = 5.08
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 13.31
************************
 FLOW PROCESS FROM NODE 9.00 TO NODE 10.00 IS CODE = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 624.00
 ELEVATION DATA: UPSTREAM(FEET) = 7043.10 DOWNSTREAM(FEET) = 7015.50
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.827
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.740
 SUBAREA TC AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA FP AP SCS Tc
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
                          2.05 0.57
 PUBLIC PARK
                   С
                                        0.850 69 11.83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 6.01
TOTAL AREA(ACRES) = 2.05 PEAK FLOW RATE(CFS) = 6.01
*******************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 7012.50 DOWNSTREAM(FEET) = 7002.50
 FLOW LENGTH(FEET) = 372.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 8.74
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 6.01
 PIPE TRAVEL TIME(MIN.) = 0.71 Tc(MIN.) = 12.54
 LONGEST FLOWPATH FROM NODE 9.00 TO NODE
                                     11.00 = 996.00 FEET.
FLOW PROCESS FROM NODE 11.00 TO NODE 12.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 7002.50 DOWNSTREAM(FEET) = 6994.40
 CHANNEL LENGTH THRU SUBAREA(FEET) = 98.00 CHANNEL SLOPE = 0.0827
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 6.01
 FLOW VELOCITY(FEET/SEC.) = 10.10 FLOW DEPTH(FEET) = 0.45
 TRAVEL TIME (MIN.) = 0.16 Tc (MIN.) = 12.70
```

Maple Hills Fields Complex Proposed 10-year Hydrology – Area A Page **7** of **10**

LONGEST FLOWPATH FROM NODE 9.00 TO NODE 12.00 = 1094.00 FEET. ****************** 12.00 TO NODE 12.00 IS CODE = FLOW PROCESS FROM NODE ______ >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE <--->>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES< ______ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 12.70RAINFALL INTENSITY(INCH/HR) = 3.56AREA-AVERAGED Fm(INCH/HR) = 0.48AREA-AVERAGED Fp(INCH/HR) = 0.57AREA-AVERAGED Ap = 0.85EFFECTIVE STREAM AREA(ACRES) = 2.05 TOTAL STREAM AREA(ACRES) = 2.05 PEAK FLOW RATE(CFS) AT CONFLUENCE = 6.01 ** CONFLUENCE DATA ** STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER

NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 13.31 12.97 3.507 0.57(0.48) 0.85 4.8 6.00

1 13.25 13.48 3.413 0.57(0.48) 0.85 4.9 3.00

1 12.77 14.71 3.210 0.57(0.48) 0.85 5.1 1.00

2 6.01 12.70 3.558 0.57(0.48) 0.85 2.0 9.00 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM Q TC Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 19.27 12.70 3.558 0.57(0.48) 0.85 6.7 9.00
2 19.23 12.97 3.507 0.57(0.48) 0.85 6.8 6.00
3 18.98 13.48 3.413 0.57(0.48) 0.85 6.9 3.00
4 18.11 14.71 3.210 0.57(0.48) 0.85 7.1 1.00 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 19.27 Tc(MIN.) = 12.70 EFFECTIVE AREA(ACRES) = 6.72 AREA-AVERAGED Fm(INCH/HR) = 0.48AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.85 TOTAL AREA(ACRES) = 7.1 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 = 1185.00 FEET. ******************* FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81 ______ >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW< ______ MAINLINE Tc(MIN.) = 12.70* 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.558 SUBAREA LOSS RATE DATA(AMC II): DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS GROUP (ACRES) (INCH/HR) (DECIMAL) CN LAND USE

> Maple Hills Fields Complex Proposed 10-year Hydrology – Area A Page **8** of **10**

```
0.45 0.57 0.850 69
 PUBLIC PARK
                      С
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 0.45 SUBAREA RUNOFF(CFS) = 1.25
 EFFECTIVE AREA(ACRES) = 7.17 AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 7.6 PEAK FLOW RATE(CFS) =
*******************
 FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 6994.40 DOWNSTREAM(FEET) = 6940.00
 FLOW LENGTH(FEET) = 133.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 32.59
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 19.85
 PIPE TRAVEL TIME(MIN.) = 0.07 Tc(MIN.) = 12.77
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 13.00 = 1318.00 FEET.
FLOW PROCESS FROM NODE
                      13.00 TO NODE
                                    13.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.77
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.545
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap
                                                  SCS
     LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN C PARK C 1.66 0.57 0.850 69
 PUBLIC PARK
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 1.66 SUBAREA RUNOFF(CFS) = 4.58
 TOTAL AREA(ACRES) = 9.2 PEAK FLOW RATE(CFS) = 24.34
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 9.2 TC(MIN.) = 12.77
EFFECTIVE AREA(ACRES) = 8.83 AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.850
 PEAK FLOW RATE(CFS) = 24.34
 ** PEAK FLOW RATE TABLE **
                                            Ae HEADWATER
  STREAM Q Tc Intensity Fp(Fm) Ap
  NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 24.34 12.77 3.545 0.57(0.48) 0.85 8.8 9.00
2 24.20 13.04 3.494 0.57(0.48) 0.85 8.9 6.00
3 23.80 13.55 3.401 0.57(0.48) 0.85 9.1 3.00
4 22.61 14.78 3.200 0.57(0.48) 0.85 9.2 1.00
```

Maple Hills Fields Complex Proposed 10-year Hydrology – Area A Page **9** of **10** ______

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc.
37 East Olive Avenue, Suite C
Redlands, CA 92373
(909) 793-2257

FILE NAME: 0193HPBT.DAT

TIME/DATE OF STUDY: 15:18 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2000

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 353.00

ELEVATION DATA: UPSTREAM(FEET) = 7035.70 DOWNSTREAM(FEET) = 7032.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.559
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.586
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                           Ap SCS
                                  Fρ
     LAND USE
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 PUBLIC PARK
                   C 1.41 0.57
                                          0.850 69 12.56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 3.94
 TOTAL AREA(ACRES) = 1.41 PEAK FLOW RATE(CFS) = 3.94
********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 7029.00 DOWNSTREAM(FEET) = 7008.00
 FLOW LENGTH(FEET) = 69.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 3.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 18.44
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 12.62
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                     3.00 =
                                              422.00 FEET.
********************
 FLOW PROCESS FROM NODE 3.00 TO NODE
                                   3.00 \text{ IS CODE} = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.62
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.574
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                Fρ
                                                SCS
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                          0.06 0.57
 PUBLIC PARK
                   С
                                         0.850
                                                 69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 0.06 SUBAREA RUNOFF(CFS) = 0.17
 EFFECTIVE AREA(ACRES) = 1.47 AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 1.5 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.5 TC(MIN.) = 12.62
EFFECTIVE AREA(ACRES) = 1.47 AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.850
 PEAK FLOW RATE(CFS) = 4.09
______
______
 END OF RATIONAL METHOD ANALYSIS
```

Maple Hills Fields Complex Proposed 10-year Hydrology – Area B *********************

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc.
37 East Olive Avenue, Suite C
Redlands, CA 92373
(909) 793-2257

FILE NAME: 0193HPCT.DAT

TIME/DATE OF STUDY: 15:19 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2000

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 360.00

ELEVATION DATA: UPSTREAM(FEET) = 7035.70 DOWNSTREAM(FEET) = 7032.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.708
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.557
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                           Ap SCS
                                  Fρ
     LAND USE
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 PUBLIC PARK
                   C 1.62 0.57
                                          0.850 69 12.71
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 4.48
 TOTAL AREA(ACRES) = 1.62 PEAK FLOW RATE(CFS) =
*****************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 7029.00 DOWNSTREAM(FEET) = 7010.00
 FLOW LENGTH(FEET) = 281.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 5.0 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 11.24
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
 PIPE TRAVEL TIME(MIN.) = 0.42 Tc(MIN.) = 13.12
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                     3.00 =
                                              641.00 FEET.
********************
 FLOW PROCESS FROM NODE 3.00 TO NODE
                                   3.00 \text{ IS CODE} = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 13.12
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.477
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                Fρ
                                                SCS
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                          0.13 0.57
 PUBLIC PARK
                   С
                                        0.850
                                                 69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.35
 EFFECTIVE AREA(ACRES) = 1.75 AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 1.8 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.8 TC(MIN.) = 13.12
EFFECTIVE AREA(ACRES) = 1.75 AREA-AVERAGED Fm(INCH/HR) = 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.850
 PEAK FLOW RATE(CFS) = 4.72
______
______
 END OF RATIONAL METHOD ANALYSIS
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc.
37 East Olive Avenue, Suite C
Redlands, CA 92373
(909) 793-2257

FILE NAME: 0193HPDT.DAT

TIME/DATE OF STUDY: 15:19 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2000

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 409.00

ELEVATION DATA: UPSTREAM(FEET) = 7062.00 DOWNSTREAM(FEET) = 7037.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.363
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 4.405
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL
                           AREA
                                                SCS
                                                    Tc
                                  Fρ
                                          Αр
     LAND USE
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 PUBLIC PARK
                     C
                            0.36
                                  0.57
                                          0.850 69
                                                    9.36
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 1.27
 TOTAL AREA(ACRES) = 0.36
                        PEAK FLOW RATE(CFS) = 1.27
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
                       0.4 TC(MIN.) =
                                       9.36
 EFFECTIVE AREA(ACRES) = 0.36 AREA-AVERAGED Fm(INCH/HR)= 0.48
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.850
 PEAK FLOW RATE(CFS) =
                       1.27
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc.
37 East Olive Avenue, Suite C
Redlands, CA 92373
(909) 793-2257

FILE NAME: 0193HPET.DAT

TIME/DATE OF STUDY: 15:20 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2000

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 581.00

ELEVATION DATA: UPSTREAM(FEET) = 7035.00 DOWNSTREAM(FEET) = 7028.80

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.614
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 4.324
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/
                   SCS SOIL AREA
                                                   SCS
                                                        Tc
                                     Fρ
                                              Ар
     LAND USE
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 COMMERCIAL
                     С
                             1.38 0.57
                                             0.100 69
                                                        9.61
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 5.30
 TOTAL AREA(ACRES) = 1.38 PEAK FLOW RATE(CFS) = 5.30
********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 7028.80 DOWNSTREAM(FEET) = 7027.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 224.00 CHANNEL SLOPE = 0.0080
 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00
 * 10 YEAR RAINFALL INTENSITY(INCH/HR) = 3.871
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                            AREA
                                                   SCS
                                    Fρ
                                              Дp
     LAND USE
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 PUBLIC PARK
                      С
                            0.57 0.57
                                           0.850
                                                    69
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.27
 AVERAGE FLOW DEPTH(FEET) = 0.64 TRAVEL TIME(MIN.) = 1.64
 Tc(MIN.) = 11.26
 SUBAREA AREA(ACRES) = 0.57 SUBAREA RUNOFF(CFS) = 1.74 EFFECTIVE AREA(ACRES) = 1.95 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.32
 TOTAL AREA(ACRES) = 2.0
                            PEAK FLOW RATE(CFS) = 6.48
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.65 FLOW VELOCITY(FEET/SEC.) = 2.31
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 805.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 2.0 TC(MIN.) = 11.26
EFFECTIVE AREA(ACRES) = 1.95 AREA-AVERAGED Fm(INCH/HR) = 0.18
 AREA-AVERAGED Fp(INCH/HR) = 0.57 AREA-AVERAGED Ap = 0.319
 PEAK FLOW RATE(CFS) = 6.48
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPFT.DAT

TIME/DATE OF STUDY: 15:20 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2000

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 406.00

ELEVATION DATA: UPSTREAM(FEET) = 7043.20 DOWNSTREAM(FEET) = 7024.10

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.191
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 5.884
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                   SCS
                                                         Tc
                                     Fр
                                              Дp
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
                     C
                             0.27
                                    0.57
                                            0.100 69 6.19
 COMMERCIAL
 NATURAL FAIR COVER
                      С
                              0.23 0.43 1.000 77 14.38
 "WOODLAND,GRASS"
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.45
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.514
 SUBAREA RUNOFF(CFS) = 2.54
 TOTAL AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) = 2.54
***********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 7024.10 DOWNSTREAM(FEET) = 7022.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 177.00 CHANNEL SLOPE = 0.0119
 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 5.141
 SUBAREA LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                    SCS
                                     Fp
                                              Αр
     LAND USE
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 PUBLIC PARK
                             0.57 0.57
                                            0.850 69
                     С
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.57
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.24
 AVERAGE FLOW DEPTH(FEET) = 0.43 TRAVEL TIME(MIN.) = 1.32
 Tc(MIN.) =
            7.51
 SUBAREA AREA(ACRES) = 0.57 SUBAREA RUNOFF(CFS) = 2.39 
EFFECTIVE AREA(ACRES) = 1.07 AREA-AVERAGED Fm(INCH/HR) = 0.36
 AREA-AVERAGED Fp(INCH/HR) = 0.53 AREA-AVERAGED Ap = 0.69
 TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 4.60
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.48 FLOW VELOCITY(FEET/SEC.) = 2.40
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 583.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.1 TC(MIN.) = 7.51
EFFECTIVE AREA(ACRES) = 1.07 AREA-AVERAGED Fm(INCH/HR)= 0.36
 AREA-AVERAGED Fp(INCH/HR) = 0.53 AREA-AVERAGED Ap = 0.693
 PEAK FLOW RATE(CFS) = 4.60
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPGT.DAT

TIME/DATE OF STUDY: 15:21 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2000

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 990.00

ELEVATION DATA: UPSTREAM(FEET) = 7044.70 DOWNSTREAM(FEET) = 7012.40

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.515
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 4.355
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                          Аp
                                                SCS
                                                    Tc
                                  Fр
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 COMMERCIAL
                            0.40
                                  0.57
                                         0.100 69 9.52
 NATURAL FAIR COVER
                            1.11
                                   0.43
                                         1.000 77 22.10
 "WOODLAND,GRASS"
                     С
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.44
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.762
 SUBAREA RUNOFF(CFS) = 5.46
 TOTAL AREA(ACRES) = 1.51 PEAK FLOW RATE(CFS) = 5.46
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                       1.5 \text{ TC}(MIN.) =
                                       9.52
 EFFECTIVE AREA(ACRES) = 1.51 AREA-AVERAGED Fm(INCH/HR) = 0.33
 AREA-AVERAGED Fp(INCH/HR) = 0.44 AREA-AVERAGED Ap = 0.762
 PEAK FLOW RATE(CFS) = 5.46
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPHT.DAT

TIME/DATE OF STUDY: 15:21 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 1.2000

ANTECEDENT MOISTURE CONDITION (AMC) II ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

INITIAL SUBAREA FLOW-LENGTH(FEET) = 266.00

ELEVATION DATA: UPSTREAM(FEET) = 7019.00 DOWNSTREAM(FEET) = 7005.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.112
   10 YEAR RAINFALL INTENSITY(INCH/HR) = 6.728
 SUBAREA To AND LOSS RATE DATA(AMC II):
  DEVELOPMENT TYPE/ SCS SOIL
                           AREA
                                                SCS
                                                    Tc
                                  Fр
                                          Aр
     LAND USE
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 COMMERCIAL
                            0.13
                                  0.57
                                          0.100 69 5.11
 NATURAL FAIR COVER
                            0.11
                                   0.43
                                          1.000 77 11.87
 "WOODLAND,GRASS"
                     С
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.45
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.512
 SUBAREA RUNOFF(CFS) = 1.40
 TOTAL AREA(ACRES) =
                   0.24
                       PEAK FLOW RATE(CFS) = 1.40
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                       0.2 TC(MIN.) =
                                       5.11
 EFFECTIVE AREA(ACRES) = 0.24 AREA-AVERAGED Fm(INCH/HR) = 0.23
 AREA-AVERAGED Fp(INCH/HR) = 0.45 AREA-AVERAGED Ap = 0.512
 PEAK FLOW RATE(CFS) =
                      1.40
______
______
```

Hydrology & Hydraulics Preliminary Report

PROPOSED HYDROLOGY 100-YEAR RUNOFF

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPAH.DAT

TIME/DATE OF STUDY: 15:24 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 2.2000

ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 400.00

ELEVATION DATA: UPSTREAM(FEET) = 7035.70 DOWNSTREAM(FEET) = 7031.50

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.199
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.350
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                         Ap SCS
                                                   Тc
                                 Fρ
    LAND USE
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 PUBLIC PARK
                   C 1.64 0.27 0.850 86 13.20
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 9.03
 TOTAL AREA(ACRES) = 1.64 PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 4.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 7028.50 DOWNSTREAM(FEET) = 7016.00
 FLOW LENGTH(FEET) = 534.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 9.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 9.21
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 9.03
 PIPE TRAVEL TIME(MIN.) = 0.97 Tc(MIN.) = 14.17
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                    4.00 =
                                             934.00 FEET.
***********************
 FLOW PROCESS FROM NODE 4.00 TO NODE 4.00 IS CODE = 81
   -----
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 14.17
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.043
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                               Fp Ap SCS
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
    LAND USE
                   С
                         0.48 0.27
 PUBLIC PARK
                                       0.850 86
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 0.48 SUBAREA RUNOFF(CFS) = 2.51
 EFFECTIVE AREA(ACRES) = 2.12 AREA-AVERAGED Fm(INCH/HR) = 0.23
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) =
                    2.1
                           PEAK FLOW RATE(CFS) =
************************
 FLOW PROCESS FROM NODE 4.00 TO NODE
                                  5.00 \text{ IS CODE} = 31
._____
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 7016.00 DOWNSTREAM(FEET) = 7012.50
 FLOW LENGTH(FEET) = 28.00 MANNING'S N = 0.013
```

```
ESTIMATED PIPE DIAMETER (INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.8 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 18.07
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 11.09
 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 14.19
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 5.00 = 962.00 FEET.
******************
 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 14.19
 RAINFALL INTENSITY(INCH/HR) = 6.04
 AREA-AVERAGED Fm(INCH/HR) = 0.23
 AREA-AVERAGED Fp(INCH/HR) = 0.27
 AREA-AVERAGED Ap = 0.85
 EFFECTIVE STREAM AREA(ACRES) = 2.12
 TOTAL STREAM AREA(ACRES) = 2.12
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*****************
 FLOW PROCESS FROM NODE 3.00 TO NODE
                                  5.00 \text{ IS CODE} = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 375.00
 ELEVATION DATA: UPSTREAM(FEET) = 7019.00 DOWNSTREAM(FEET) = 7015.50
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 13.169
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.360
 SUBAREA To AND LOSS RATE DATA(AMC III):
 DEVELOPMENT TYPE/ SCS SOIL AREA
                                Fp Ap SCS Tc
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
    LAND USE
                   C 1.46 0.27
                                       0.850 86 13.17
 PUBLIC PARK
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 8.05
 TOTAL AREA(ACRES) =
                  1.46 PEAK FLOW RATE(CFS) = 8.05
************************
 FLOW PROCESS FROM NODE 5.00 TO NODE 5.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.17
 RAINFALL INTENSITY(INCH/HR) = 6.36
```

Maple Hills Fields Complex Proposed 100-year Hydrology – Area A Page **3** of **10**

```
AREA-AVERAGED Fm(INCH/HR) = 0.23
 AREA-AVERAGED Fp(INCH/HR) = 0.27
 AREA-AVERAGED Ap = 0.85
 EFFECTIVE STREAM AREA(ACRES) = 1.46
 TOTAL STREAM AREA(ACRES) = 1.46
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.05
 ** CONFLUENCE DATA **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

    11.09
    14.19
    6.036
    0.27( 0.23) 0.85
    2.1
    1.00

    8.05
    13.17
    6.360
    0.27( 0.23) 0.85
    1.5
    3.00

 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM Q To Intensity Fp(Fm) Ap Ae HEADWATER

    NUMBER
    (CFS)
    (MIN.)
    (INCH/HR)
    (INCH/HR)
    (ACRES)
    NODE

    1
    18.92
    13.17
    6.360
    0.27(0.23)
    0.85
    3.4
    3.00

    2
    18.72
    14.19
    6.036
    0.27(0.23)
    0.85
    3.6
    1.00

 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 18.92 Tc(MIN.) = 13.17

EFFECTIVE AREA(ACRES) = 3.43 AREA-AVERAGED Fm(INCH/HR) = 0.23

AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 3.6
 LONGEST FLOWPATH FROM NODE
                               1.00 TO NODE
                                                5.00 = 962.00 FEET.
**********************
 FLOW PROCESS FROM NODE 5.00 TO NODE 8.00 IS CODE = 31
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 7012.50 DOWNSTREAM(FEET) = 7004.50
 FLOW LENGTH(FEET) = 48.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 8.5 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 23.14
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 18.92
 PIPE TRAVEL TIME(MIN.) = 0.03 Tc(MIN.) = 13.20
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 8.00 = 1010.00 FEET.
************************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
 TIME OF CONCENTRATION(MIN.) = 13.20
 RAINFALL INTENSITY(INCH/HR) = 6.35
 AREA-AVERAGED Fm(INCH/HR) = 0.23
```

Maple Hills Fields Complex Proposed 100-year Hydrology – Area A Page **4** of **10**

```
AREA-AVERAGED Fp(INCH/HR) = 0.27
 AREA-AVERAGED Ap = 0.85
 EFFECTIVE STREAM AREA(ACRES) = 3.43
 TOTAL STREAM AREA(ACRES) = 3.58
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
*****************
 FLOW PROCESS FROM NODE 6.00 TO NODE 7.00 IS CODE = 21
______
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 346.00
 ELEVATION DATA: UPSTREAM(FEET) = 7035.70 DOWNSTREAM(FEET) = 7032.00
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.409
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.630
 SUBAREA TC AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA Fp Ap SCS Tc
             GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
C 1.50 0.27 0.850 86 12.41
     LAND USE
 PUBLIC PARK
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 8.64

TOTAL AREA(ACRES) = 1.50 PEAK FLOW RATE(CFS) = 8.64
************************
 FLOW PROCESS FROM NODE 7.00 TO NODE 8.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 7029.00 DOWNSTREAM(FEET) = 7004.50
 FLOW LENGTH(FEET) = 225.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 6.2 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 16.04
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 8.64
 PIPE TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) = 12.64
 LONGEST FLOWPATH FROM NODE 6.00 TO NODE 8.00 = 571.00 FEET.
*******************
 FLOW PROCESS FROM NODE 8.00 TO NODE 8.00 IS CODE = 1
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.64
 RAINFALL INTENSITY(INCH/HR) = 6.54
 AREA-AVERAGED Fm(INCH/HR) = 0.23
 AREA-AVERAGED Fp(INCH/HR) = 0.27
```

Maple Hills Fields Complex Proposed 100-year Hydrology – Area A Page **5** of **10**

```
AREA-AVERAGED Ap = 0.85
  EFFECTIVE STREAM AREA(ACRES) = 1.50
  TOTAL STREAM AREA(ACRES) = 1.50
  PEAK FLOW RATE(CFS) AT CONFLUENCE = 8.64
  ** CONFLUENCE DATA **
   STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER

      NUMBER
      (CFS)
      (MIN.)
      (INCH/HR)
      (INCH/HR)
      (ACRES)
      NODE

      1
      18.92
      13.20
      6.348
      0.27(0.23)
      0.85
      3.4
      3.00

      1
      18.72
      14.23
      6.025
      0.27(0.23)
      0.85
      3.6
      1.00

                8.64 12.64 6.544 0.27( 0.23) 0.85
                                                                         1.5
  RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
  CONFLUENCE FORMULA USED FOR 2 STREAMS.
  ** PEAK FLOW RATE TABLE **

        STREAM
        Q
        Tc
        Intensity
        Fp(Fm)
        Ap
        Ae
        HEADWATER

        NUMBER
        (CFS)
        (MIN.)
        (INCH/HR)
        (INCH/HR)
        (ACRES)
        NODE

        1
        27.33
        12.64
        6.544
        0.27( 0.23)
        0.85
        4.8
        6.00

        2
        27.29
        13.20
        6.348
        0.27( 0.23)
        0.85
        4.9
        3.00

        3
        26.65
        14.23
        6.025
        0.27( 0.23)
        0.85
        5.1
        1.00

  COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
  PEAK FLOW RATE(CFS) = 27.33 Tc(MIN.) = 12.64

EFFECTIVE AREA(ACRES) = 4.78 AREA-AVERAGED Fm(INCH/HR) = 0.23

AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.85
  TOTAL AREA(ACRES) = 5.1
  LONGEST FLOWPATH FROM NODE
                                        1.00 TO NODE
                                                              8.00 = 1010.00 FEET.
***********************
  FLOW PROCESS FROM NODE 8.00 TO NODE 12.00 IS CODE = 51
  >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
  >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) << < <
______
  ELEVATION DATA: UPSTREAM(FEET) = 7004.50 DOWNSTREAM(FEET) = 6994.40
  CHANNEL LENGTH THRU SUBAREA(FEET) = 175.00 CHANNEL SLOPE = 0.0577
  CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 3.000
  MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
  CHANNEL FLOW THRU SUBAREA(CFS) = 27.33
  FLOW VELOCITY(FEET/SEC.) = 12.85 FLOW DEPTH(FEET) = 0.84
  TRAVEL TIME(MIN.) = 0.23 Tc(MIN.) = 12.87
  LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 = 1185.00 FEET.
************************
  FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE =
  >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
______
  TOTAL NUMBER OF STREAMS = 2
  CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
  TIME OF CONCENTRATION(MIN.) = 12.87
  RAINFALL INTENSITY(INCH/HR) = 6.46
  AREA-AVERAGED Fm(INCH/HR) = 0.23
  AREA-AVERAGED Fp(INCH/HR) = 0.27
```

Maple Hills Fields Complex Proposed 100-year Hydrology – Area A Page **6** of **10**

```
AREA-AVERAGED Ap = 0.85
 EFFECTIVE STREAM AREA(ACRES) = 4.78
 TOTAL STREAM AREA(ACRES) = 5.08
 PEAK FLOW RATE(CFS) AT CONFLUENCE = 27.33
********************
 FLOW PROCESS FROM NODE 9.00 TO NODE
                                  10.00 \text{ IS CODE} = 21
 >>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<
 >>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<
______
 INITIAL SUBAREA FLOW-LENGTH(FEET) = 624.00
 ELEVATION DATA: UPSTREAM(FEET) = 7043.10 DOWNSTREAM(FEET) = 7015.50
 Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 11.827
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.857
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                Fp Ap SCS Tc
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
                          2.05 0.27
 PUBLIC PARK
                   С
                                         0.850 86 11.83
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 12.22
 TOTAL AREA(ACRES) = 2.05 PEAK FLOW RATE(CFS) = 12.22
***********************
 FLOW PROCESS FROM NODE 10.00 TO NODE 11.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << <<
______
 ELEVATION DATA: UPSTREAM(FEET) = 7012.50 DOWNSTREAM(FEET) = 7002.50
 FLOW LENGTH(FEET) = 372.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 11.4 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 10.40
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 12.22
 PIPE TRAVEL TIME(MIN.) = 0.60 Tc(MIN.) = 12.42
 LONGEST FLOWPATH FROM NODE 9.00 TO NODE 11.00 =
                                              996.00 FEET.
**************************
 FLOW PROCESS FROM NODE 11.00 TO NODE
                                  12.00 \text{ IS CODE} = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 7002.50 DOWNSTREAM(FEET) = 6994.40
 CHANNEL LENGTH THRU SUBAREA(FEET) = 98.00 CHANNEL SLOPE = 0.0827
 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 3.000
 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 2.00
 CHANNEL FLOW THRU SUBAREA(CFS) = 12.22
 FLOW VELOCITY(FEET/SEC.) = 12.00 FLOW DEPTH(FEET) = 0.58
 TRAVEL TIME(MIN.) = 0.14 Tc(MIN.) = 12.56
 LONGEST FLOWPATH FROM NODE 9.00 TO NODE 12.00 = 1094.00 FEET.
```

```
FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 1
______
 >>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<
 >>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<
______
 TOTAL NUMBER OF STREAMS = 2
 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
 TIME OF CONCENTRATION(MIN.) = 12.56
 RAINFALL INTENSITY(INCH/HR) = 6.57
 AREA-AVERAGED fm(INCH/HR) = 0.23
 AREA-AVERAGED Fp(INCH/HR) = 0.27
 AREA-AVERAGED Ap = 0.85
 EFFECTIVE STREAM AREA(ACRES) = 2.05
 TOTAL STREAM AREA(ACRES) = 2.05
 PEAK FLOW RATE(CFS) AT CONFLUENCE =
                                         12.22
 ** CONFLUENCE DATA **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER
NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 27.33 12.87 6.463 0.27(0.23) 0.85 4.8 6.00
1 27.29 13.43 6.273 0.27(0.23) 0.85 4.9 3.00
1 26.65 14.45 5.958 0.27(0.23) 0.85 5.1 1.00
2 12.22 12.56 6.574 0.27(0.23) 0.85 2.0 9.00
 RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
 CONFLUENCE FORMULA USED FOR 2 STREAMS.
 ** PEAK FLOW RATE TABLE **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER

NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE

1 39.37 12.56 6.574 0.27(0.23) 0.85 6.7 9.00

2 39.34 12.87 6.463 0.27(0.23) 0.85 6.8 6.00

3 38.93 13.43 6.273 0.27(0.23) 0.85 7.0 3.00

4 37.68 14.45 5.958 0.27(0.23) 0.85 7.1 1.00
 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
 PEAK FLOW RATE(CFS) = 39.37 Tc(MIN.) = 12.56
 EFFECTIVE AREA(ACRES) = 6.72 AREA-AVERAGED Fm(INCH/HR) = 0.23
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 7.1
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 12.00 = 1185.00 FEET.
***********************
 FLOW PROCESS FROM NODE 12.00 TO NODE 12.00 IS CODE = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.56
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.574
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS
                        GROUP (ACRES) (INCH/HR) (DECIMAL) CN
      LAND USE
 PUBLIC PARK
                          C 0.45 0.27 0.850 86
```

```
SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 0.45 SUBAREA RUNOFF(CFS) = 2.57
 EFFECTIVE AREA(ACRES) = 7.17 AREA-AVERAGED Fm(INCH/HR) = 0.23
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 7.6 PEAK FLOW RATE(CFS) =
***********************
 FLOW PROCESS FROM NODE 12.00 TO NODE 13.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) <<<<
______
 ELEVATION DATA: UPSTREAM(FEET) = 6994.40 DOWNSTREAM(FEET) = 6940.00
 FLOW LENGTH(FEET) = 133.00 MANNING'S N = 0.013
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 10.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 39.24
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) = 40.91
 PIPE TRAVEL TIME(MIN.) = 0.06 Tc(MIN.) = 12.62
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 13.00 = 1318.00 FEET.
***********************
 FLOW PROCESS FROM NODE 13.00 TO NODE 13.00 IS CODE = 81
______
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.62
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.554
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA Fp SCS
     LAND USE GROUP (ACRES) (INCH/HR) (DECIMAL) CN C PARK C 1.66 0.27 0.850 86
 PUBLIC PARK
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 1.66 SUBAREA RUNOFF(CFS) = 9.45 
EFFECTIVE AREA(ACRES) = 8.83 AREA-AVERAGED Fm(INCH/HR) = 0.23
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 9.2 PEAK FLOW RATE(CFS) = 50.22
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 9.2 TC(MIN.) = 12.62
EFFECTIVE AREA(ACRES) = 8.83 AREA-AVERAGED Fm(INCH/HR) = 0.23
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.850
                      50.22
 PEAK FLOW RATE(CFS) =
 ** PEAK FLOW RATE TABLE **
  STREAM Q Tc Intensity Fp(Fm) Ap Ae HEADWATER NUMBER (CFS) (MIN.) (INCH/HR) (INCH/HR) (ACRES) NODE
         50.22 12.62 6.554 0.27( 0.23) 0.85 8.8 9.00
                                              8.9
        49.9912.936.4430.27( 0.23) 0.8549.2613.496.2540.27( 0.23) 0.85
                                                      6.00
                                              9.1
    4 47.49 14.51 5.942 0.27( 0.23) 0.85 9.2
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPBH.DAT

TIME/DATE OF STUDY: 15:24 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 2.2000

ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 353.00

ELEVATION DATA: UPSTREAM(FEET) = 7035.70 DOWNSTREAM(FEET) = 7032.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.559
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.574
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                           Ap SCS
                                                     Tc
                                  Fρ
     LAND USE
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 PUBLIC PARK
                   С
                          1.41 0.27
                                          0.850 86 12.56
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 8.05
 TOTAL AREA(ACRES) = 1.41 PEAK FLOW RATE(CFS) = 8.05
************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 7029.00 DOWNSTREAM(FEET) = 7008.00
 FLOW LENGTH(FEET) = 69.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 4.6 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 22.72
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  8.05
 PIPE TRAVEL TIME(MIN.) = 0.05 Tc(MIN.) = 12.61
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                     3.00 =
                                              422.00 FEET.
***********************
 FLOW PROCESS FROM NODE
                    3.00 TO NODE
                                   3.00 \text{ IS CODE} = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
______
 MAINLINE Tc(MIN.) = 12.61
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.556
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                 Fρ
                                                SCS
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                          0.06 0.27
 PUBLIC PARK
                   С
                                         0.850
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 0.06 SUBAREA RUNOFF(CFS) = 0.34
 EFFECTIVE AREA(ACRES) = 1.47 AREA-AVERAGED Fm(INCH/HR) = 0.23
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 1.5 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.5 TC(MIN.) = 12.61
EFFECTIVE AREA(ACRES) = 1.47 AREA-AVERAGED Fm(INCH/HR) = 0.23
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.850
 PEAK FLOW RATE(CFS) = 8.37
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPCH.DAT

TIME/DATE OF STUDY: 15:25 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 2.2000

ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 360.00

ELEVATION DATA: UPSTREAM(FEET) = 7035.70 DOWNSTREAM(FEET) = 7032.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 12.708
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.520
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                           Ap SCS
                                   Fρ
     LAND USE
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 PUBLIC PARK
                   С
                          1.62 0.27
                                          0.850 86 12.71
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) = 9.17
 TOTAL AREA(ACRES) = 1.62 PEAK FLOW RATE(CFS) =
*****************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 31
______
 >>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<
 >>>>USING COMPUTER-ESTIMATED PIPESIZE (NON-PRESSURE FLOW) << < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 7029.00 DOWNSTREAM(FEET) = 7010.00
 FLOW LENGTH(FEET) = 281.00 MANNING'S N = 0.013
 ESTIMATED PIPE DIAMETER(INCH) INCREASED TO 18.000
 DEPTH OF FLOW IN 18.0 INCH PIPE IS 7.3 INCHES
 PIPE-FLOW VELOCITY(FEET/SEC.) = 13.72
 ESTIMATED PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
 PIPE-FLOW(CFS) =
                  9.17
 PIPE TRAVEL TIME(MIN.) = 0.34 Tc(MIN.) = 13.05
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE
                                     3.00 =
                                              641.00 FEET.
***********************
 FLOW PROCESS FROM NODE 3.00 TO NODE
                                   3.00 \text{ IS CODE} = 81
 >>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<
_______
 MAINLINE Tc(MIN.) = 13.05
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 6.400
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                  Fp
                                                SCS
                  GROUP (ACRES) (INCH/HR) (DECIMAL) CN
     LAND USE
                                0.27
 PUBLIC PARK
                   С
                            0.13
                                         0.850
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA AREA(ACRES) = 0.13 SUBAREA RUNOFF(CFS) = 0.72
 EFFECTIVE AREA(ACRES) = 1.75 AREA-AVERAGED Fm(INCH/HR) = 0.23
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.85
 TOTAL AREA(ACRES) = 1.8 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.8 TC(MIN.) = 13.05
EFFECTIVE AREA(ACRES) = 1.75 AREA-AVERAGED Fm(INCH/HR) = 0.23
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.850
 PEAK FLOW RATE(CFS) = 9.72
______
______
 END OF RATIONAL METHOD ANALYSIS
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPDH.DAT

TIME/DATE OF STUDY: 15:25 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 2.2000

ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 409.00

ELEVATION DATA: UPSTREAM(FEET) = 7062.00 DOWNSTREAM(FEET) = 7037.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.363
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 8.075
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/
                   SCS SOIL
                           AREA
                                                SCS
                                                    Tc
                                  Fρ
                                          Aр
     LAND USE
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 PUBLIC PARK
                     C
                            0.36
                                   0.27
                                          0.850
                                               86
                                                    9.36
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 SUBAREA RUNOFF(CFS) =
                     2.54
 TOTAL AREA(ACRES) = 0.36
                        PEAK FLOW RATE(CFS) = 2.54
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) =
                       0.4 TC(MIN.) =
                                       9.36
 EFFECTIVE AREA(ACRES) = 0.36 AREA-AVERAGED Fm(INCH/HR)= 0.23
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.850
 PEAK FLOW RATE(CFS) =
                       2.54
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPEH.DAT

TIME/DATE OF STUDY: 15:26 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 2.2000

ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 581.00

ELEVATION DATA: UPSTREAM(FEET) = 7035.00 DOWNSTREAM(FEET) = 7028.80

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.614
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 7.927
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                    SCS
                                                         Tc
                                     Fρ
                                              Αр
     LAND USE
                     GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 COMMERCIAL
                     С
                             1.38 0.27
                                             0.100 86
                                                         9.61
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.100
 SUBAREA RUNOFF(CFS) = 9.81
 TOTAL AREA(ACRES) =
                    1.38 PEAK FLOW RATE(CFS) = 9.81
************************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 51
______
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) <>>>
______
 ELEVATION DATA: UPSTREAM(FEET) = 7028.80 DOWNSTREAM(FEET) = 7027.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 224.00 CHANNEL SLOPE = 0.0080
 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 7.224
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL
                            AREA
                                                    SCS
                                     Fρ
                                              Дp
     LAND USE
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 PUBLIC PARK
                      С
                            0.57
                                     0.27
                                            0.850
                                                     86
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.74
 AVERAGE FLOW DEPTH(FEET) = 0.89 TRAVEL TIME(MIN.) = 1.36
 Tc(MIN.) =
           10.98
 SUBAREA AREA(ACRES) = 0.57 SUBAREA RUNOFF(CFS) = 3.59 
EFFECTIVE AREA(ACRES) = 1.95 AREA-AVERAGED Fm(INCH/HR) =
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.32
 TOTAL AREA(ACRES) = 2.0
                             PEAK FLOW RATE(CFS) = 12.53
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.93 FLOW VELOCITY(FEET/SEC.) = 2.79
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 805.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 2.0 TC(MIN.) = 10.98
EFFECTIVE AREA(ACRES) = 1.95 AREA-AVERAGED Fm(INCH/HR) = 0.09
 AREA-AVERAGED Fp(INCH/HR) = 0.27 AREA-AVERAGED Ap = 0.319
 PEAK FLOW RATE(CFS) = 12.53
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPFH.DAT

TIME/DATE OF STUDY: 15:26 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 2.2000

ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 406.00

ELEVATION DATA: UPSTREAM(FEET) = 7043.20 DOWNSTREAM(FEET) = 7024.10

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 6.191
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 10.787
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                    SCS
                                                          Tс
                                     Fρ
                                              Ар
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 COMMERCIAL
                     C
                             0.27
                                    0.27
                                             0.100 86 6.19
 NATURAL FAIR COVER
                      С
                              0.23 0.19 1.000 92 14.38
 "WOODLAND,GRASS"
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.514
 SUBAREA RUNOFF(CFS) = 4.81
 TOTAL AREA(ACRES) = 0.50 PEAK FLOW RATE(CFS) = 4.81
***********************
 FLOW PROCESS FROM NODE 2.00 TO NODE 3.00 IS CODE = 51
 >>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<
 >>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT) < < < <
______
 ELEVATION DATA: UPSTREAM(FEET) = 7024.10 DOWNSTREAM(FEET) = 7022.00
 CHANNEL LENGTH THRU SUBAREA(FEET) = 177.00 CHANNEL SLOPE = 0.0119
 CHANNEL BASE(FEET) = 3.00 "Z" FACTOR = 2.000
 MANNING'S FACTOR = 0.035 MAXIMUM DEPTH(FEET) = 2.00
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 9.643
 SUBAREA LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                     SCS
                                     Fp
                                               Aр
     LAND USE
                    GROUP (ACRES) (INCH/HR) (DECIMAL) CN
 PUBLIC PARK
                             0.57 0.27
                                            0.850 86
                     С
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.27
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.850
 TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) =
 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.74
 AVERAGE FLOW DEPTH(FEET) = 0.62 TRAVEL TIME(MIN.) = 1.08
 Tc(MIN.) =
            7.27
 SUBAREA AREA(ACRES) = 0.57 SUBAREA RUNOFF(CFS) = 4.83
EFFECTIVE AREA(ACRES) = 1.07 AREA-AVERAGED Fm(INCH/HR) = 0.17
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.69
 TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 9.12
 END OF SUBAREA CHANNEL FLOW HYDRAULICS:
 DEPTH(FEET) = 0.70 FLOW VELOCITY(FEET/SEC.) = 2.94
 LONGEST FLOWPATH FROM NODE 1.00 TO NODE 3.00 = 583.00 FEET.
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES) = 1.1 TC(MIN.) = 7.27
EFFECTIVE AREA(ACRES) = 1.07 AREA-AVERAGED Fm(INCH/HR) = 0.17
 AREA-AVERAGED Fp(INCH/HR) = 0.25 AREA-AVERAGED Ap = 0.693
 PEAK FLOW RATE(CFS) = 9.12
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPGH.DAT

TIME/DATE OF STUDY: 15:27 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 2.2000

ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
- *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
- *USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 990.00

ELEVATION DATA: UPSTREAM(FEET) = 7044.70 DOWNSTREAM(FEET) = 7012.40

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 9.515
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 7.984
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                           Аp
                                                SCS
                                                     Tc
                                   Fр
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
     LAND USE
 COMMERCIAL
                            0.40
                                  0.27
                                          0.100 86
                                                     9.52
 NATURAL FAIR COVER
                            1.11
                                    0.19
                                          1.000 92 22.10
 "WOODLAND,GRASS"
                     C
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.19
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.762
 SUBAREA RUNOFF(CFS) = 10.65
 TOTAL AREA(ACRES) = 1.51 PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                       1.5 \text{ TC(MIN.)} =
                                       9.52
 EFFECTIVE AREA(ACRES) = 1.51 AREA-AVERAGED Fm(INCH/HR) = 0.15
 AREA-AVERAGED Fp(INCH/HR) = 0.19 AREA-AVERAGED Ap = 0.762
 PEAK FLOW RATE(CFS) = 10.65
______
______
```

RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM PACKAGE (Reference: 1986 SAN BERNARDINO CO. HYDROLOGY CRITERION)
(c) Copyright 1983-2015 Advanced Engineering Software (aes)
Ver. 22.0 Release Date: 07/01/2015 License ID 1302

Analysis prepared by:

Hicks & Hartwick, Inc. 37 East Olive Avenue, Suite C Redlands, CA 92373 (909) 793-2257

FILE NAME: 0193HPHH.DAT

TIME/DATE OF STUDY: 15:27 02/15/2021

USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:

--*TIME-OF-CONCENTRATION MODEL*--

USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.95 *USER-DEFINED LOGARITHMIC INTERPOLATION USED FOR RAINFALL*

SLOPE OF INTENSITY DURATION CURVE(LOG(I;IN/HR) vs. LOG(Tc;MIN)) = 0.7000 USER SPECIFIED 1-HOUR INTENSITY(INCH/HOUR) = 2.2000

ANTECEDENT MOISTURE CONDITION (AMC) III ASSUMED FOR RATIONAL METHOD

GLOBAL STREET FLOW-DEPTH CONSTRAINTS:

- 1. Relative Flow-Depth = 0.00 FEET
 as (Maximum Allowable Street Flow Depth) (Top-of-Curb)
- 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)

SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.

*USER-SPECIFIED MINIMUM TOPOGRAPHIC SLOPE ADJUSTMENT NOT SELECTED

FLOW PROCESS FROM NODE 1.00 TO NODE 2.00 IS CODE = 21

>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<

>>USE TIME-OF-CONCENTRATION NOMOGRAPH FOR INITIAL SUBAREA<<

INITIAL SUBAREA FLOW-LENGTH(FEET) = 266.00

ELEVATION DATA: UPSTREAM(FEET) = 7019.00 DOWNSTREAM(FEET) = 7005.00

```
Tc = K*[(LENGTH** 3.00)/(ELEVATION CHANGE)]**0.20
 SUBAREA ANALYSIS USED MINIMUM Tc(MIN.) = 5.112
 * 100 YEAR RAINFALL INTENSITY(INCH/HR) = 12.335
 SUBAREA To AND LOSS RATE DATA(AMC III):
  DEVELOPMENT TYPE/ SCS SOIL AREA
                                                SCS
                                                     Tc
                                  Fр
                                           Aр
     LAND USE
                   GROUP (ACRES) (INCH/HR) (DECIMAL) CN (MIN.)
 COMMERCIAL
                            0.13
                                  0.27
                                          0.100 86
                                                     5.11
 NATURAL FAIR COVER
                            0.11
                                    0.19
                                          1.000 92 11.87
 "WOODLAND, GRASS"
                     С
 SUBAREA AVERAGE PERVIOUS LOSS RATE, Fp(INCH/HR) = 0.20
 SUBAREA AVERAGE PERVIOUS AREA FRACTION, Ap = 0.512
 SUBAREA RUNOFF(CFS) = 2.64
 TOTAL AREA(ACRES) =
                    0.24
                        PEAK FLOW RATE(CFS) =
______
 END OF STUDY SUMMARY:
 TOTAL AREA(ACRES)
                       0.2 TC(MIN.) =
                                        5.11
 EFFECTIVE AREA(ACRES) = 0.24 AREA-AVERAGED Fm(INCH/HR)= 0.10
 AREA-AVERAGED fp(INCH/HR) = 0.20 AREA-AVERAGED Ap = 0.512
 PEAK FLOW RATE(CFS) =
                       2.64
______
______
```

Hydrology & Hydraulics Preliminary Report

SMALL AREA UNIT HYDROGRAPH CALCULATIONS

Hydrology & Hydraulics Preliminary Report

SURFACE HYDRAULICS

Hydrology & Hydraulics Preliminary Report

CATCH BASIN INLET HYDRAULICS

Hydrology & Hydraulics Preliminary Report

STORM DRAIN HYDRAULICS

Hydrology & Hydraulics Preliminary Report

HYDROLOGY MAPS

MAPLE HILL FIELDS COMPLEX Bear Valley Unified School District Education Foundation SAN BERNARDINO COUNTY EXISTING HYDROLOGY

HYDROLOGIC DATA

SCS SOILS GROUP: C INTENSITY-DURATION SLOPE: 0.70 2-YR/1-HR RAINFALL (AMC II): 0.693 in/hr 10-YR/1-HR RAINFALL (AMC II): 1.20 in/hr 100-YR/1-HR RAINFALL (AMC III): 2.20 in/hr

HICKS & HARTWICK, Inc.

CIVIL ENGINEERS · LAND SURVEYORS

37 East Olive Avenue REDLANDS, CALIFORNIA 92373 909.793.2257

Prepared: FEBRUARY 2021

MAPLE HILL FIELDS COMPLEX Bear Valley Unified School District Education Foundation SAN BERNARDINO COUNTY PROPOSED HYDROLOGY

HYDROLOGIC DATA

SCS SOILS GROUP: C
INTENSITY-DURATION SLOPE: 0.70
2-YR/1-HR RAINFALL (AMC II): 0.693 in/hr
10-YR/1-HR RAINFALL (AMC III): 1.20 in/hr
100-YR/1-HR RAINFALL (AMC III): 2.20 in/hr

HICKS & HARTWICK, Inc.

CIVIL ENGINEERS · LAND SURVEYORS

37 East Olive Avenue REDLANDS, CALIFORNIA 92373 909.793.2257

Prepared: FEBRUARY 2021

Hydrology & Hydraulics Preliminary Report

DIGITAL COPY

Hydrology & Hydraulics Preliminary Report

PRECISE GRADING PLANS

