PRELIMINARY HYDROLOGY & HYDRAULIC STUDY

FOR

PROJ-2019-00052 NW CORNER OF SR 58 & HIGHWAY 395, BORON, CA 93516 A.P.N 0492-191-04

Prepared For Owner/Developer:

Mr. MARK SATER

ALRAHMAN LLC 4300 Edison Avenue Chino, CA 91710 Ph: (909) 772-5898

Prepared By:

W&W LAND DESIGN CONSULTANTS

2335 W. Foothill Blvd., Suite #1 Upland, CA 91786 (909) 608-7118

June 6, 2020

Project job No. 1815

TABLE OF CONTENTS

Section I Introduction

Section II Hydrology Methodology Section III Project Description

Rational Method Existing Condition Proposed Condition

Section IV Findings

Appendix A Vicinity Map

Appendix B Reference

(Based on San Bernardino County Hydrology Manual): Hydrologic Soils Group Map for South Central Area (C-11)

SBFCD Desert Isohyetals 10 Year 1 Hour (B-9) SBFCD Desert Isohyetals 100 Year 1 Hour (B-10)

Appendix C Hydrology Study – Existing Conditions

10-year storm event 100-year storm event

Appendix D Hydrology Study – Proposed Conditions

10-year storm event 100-year storm event

Appendix E Hydraulic Calculations

Catch Basin Capacity Calculations

Storm Drain Line A Capacity Calculations

Appendix F Existing Hydrology Map

Proposed Hydrology Map

Section I

Introduction

The following hydrology study has been prepared for The Development of a Gas Station and Food Mart. The site is approximately 3.91-acre drainage tributary area, and located at NW corner of SR 58 & Highway 395 in the city of Boron, County of San Bernardino, California. The general location of the site is illustrated on the Vicinity Map, included in the Appendix A of this report.

The primary objectives of this report are as follows:

- 1. Delineate the tributary drainage areas to proposed facilities.
- 2. Based on drainage patterns, ground slope, land used and soil type and using the San Bernardino County Rational Method, perform hydrologic calculations of onsite drainage facilities.
- 3. Based on the hydrology results and physical site requirements, design the storm drainage facilities to convey the computed design discharges.
- 4. Determine the 10-year and 100-year proposed condition flow rates in accordance with the San Bernardino County Hydrology Manual.

Section II

Methodology

For both, the existing and proposed conditions, the peak storm discharge for the drainage sub-areas (see Hydrology Map in Appendix B of this report) were calculated using the San Bernardino County Hydrology Manual. CIVILD software was used to calculate the 10-year and 100-year storm event. The peak 100-year storm runoff is calculated to demonstrate the runoff from 100-year storm event is to size the sump catch basin and storm drainpipes. The storm drainpipe capacities calculations are calculated by using Flowmaster software.

Section III

Project Description

Rational Method

The Rational Method was utilized to perform the 10-year, 100-year Storm Events hydrology analyses for the existing and proposed conditions of project site.

Soil Type	С	
Land Use	Undeveloped (poor cover)	
AMC	II (10 year storm event)	
AMC	III (100 year storm event)	

The rainfall precipitation was uniformly distributed throughout the Onsite Areas. The following table shows the values used for the associated 1-hour storm event:

Storm Event (1 Hour Duration)	Precipitation Value	
10-Year	0.60 inch / hour	
100-Year	1.03 inch / hour	

Existing condition

The existing site is approximately 3.91 acres with existing building, concrete driveway but most of the project site is covered with dirt and considered to be a natural vacant land. In the existing condition, the site have only one subarea which will sheet flow from southeast to northwest of the subject project.

Refer to the "Existing Hydrology Map" in the Appendix F for an illustration of the existing drainage zones.

The following table illustrates the data and results for the existing 10-year and 100-year storm events. All calculations can be found in Appendix C of this report.

Drainage Area	Area (Ac.)	10 Year Peak Flow (CFS)	100 Year Peak Flow (CFS)	Time of Concentration
E-1	3.91	3.55	7.49	20.49 min
Total	3.91	3.55	7.49	

Proposed condition

In the proposed condition, the site is divided into six distinct drainage areas. All the subarea will drain either sheet flow or pipe travel to the designated catch basin before it discharges to the water quality Bmp on the northwest corner of the site. For the mitigation of the increased flow in the project site, water quality/ Retention (WQMP) basin will be provided to mitigate the amount of 100 year peak flow. All the Catch Basin, Drain inlet and Storm drain line are properly designed so that it will be sufficient to provide the necessary requirement of the Peak Storm water Flow.

Refer to the "Proposed Hydrology Map" in the Appendix F for an illustration of the proposed drainage zones.

The following table illustrates the data and results for the proposed 10-year and 100-year storm events. All calculations can be found in Appendix D of this report.

Drainage Area	Area (Ac.)	10 Year Peak Flow (CFS)	100 Year Peak Flow (CFS)	Time of Concentration
A-1	0.48	1.06	1.85	7.75 min.
A-2	0.54	1.29	2.24	6.97 min.
Confluence @ Node 13	1.02	2.28	3.98	6.97 min.
A-3	0.98	2.23	3.89	7.46 min.
A-4	0.09	0.27	0.46	5.16 min.
Confluence @ Node 20	1.07	2.44	4.26	8.21 min.
Confluence @ Node 30	2.09	4.67	8.15	7.66 min.
A-5	0.66	1.37	2.38	8.52 min.
Confluence @ Node 40	2.75	5.99	10.45	7.78 min.
A-6	1.16	2.97	5.17	6.32 min.
Confluence @ Node 200	3.91	8.56	14.94	6.32 min.
Total	3.91	8.56	14.94	

Project No: 1815

Section IV Findings

After development, more impervious surface will cover the proposed site than before. The additional runoff with existing storm water runoff will be conveyed and treated through the designated storm water quality system.

The hydrology and hydraulic analyses prepared in this report are comprehensive and evaluate the drainage impacts associated with the development of this project. The calculations within this report substantiate that the development can be constructed as shown on the proposed plans with no detrimental effect to downstream.

Project No: 1815

APPENDIX A

VICINITY MAP

APPENDIX B

Reference

(Based on San Bernardino County Hydrology Manual):

Hydrologic Soils Group Map for Southwest - Area (C-11) SBFCD Desert Isohyetals 10 Year 1 Hour (B-9) SBFCD Desert Isohyetals 100 Year 1 Hour (B-10)

APPENDIX C

Hydrology Study – Existing Conditions

10-year storm event 100-year storm event

```
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2014 Version 9.0
      Rational Hydrology Study Date: 03/11/20
______
1815 STATE ROUTE 58 NEW GAS STATION & FOOD MART
EXISTING CONDITION
10 YEAR STORM EVENT
SUBAREA E-1
Program License Serial Number 6364
******* Hydrology Study Control Information ********
______
Rational hydrology study storm event year is 10.0
Computed rainfall intensity:
Storm year =
            10.00 1 hour rainfall = 0.600 (In.)
Slope used for rainfall intensity curve b = 0.7000
Soil antecedent moisture condition (AMC) = 2
Process from Point/Station 100.000 to Point/Station 101.000
**** INITIAL AREA EVALUATION ****
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 86.00
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.265(In/Hr)
Initial subarea data:
Initial area flow distance = 713.000(Ft.)
Top (of initial area) elevation = 453.000(Ft.)
Bottom (of initial area) elevation = 449.000(Ft.)
Difference in elevation = 4.000(Ft.)
Slope = 0.00561 \text{ s(\%)} =
                         0.56
TC = k(0.525)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 20.493 min.
Rainfall intensity = 1.273(In/Hr) for a
                                        10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.713
Subarea runoff = 3.546(CFS)
```

Total initial stream area = 3.910(Ac.)

Pervious area fraction = 1.000

Initial area Fm value = 0.265(In/Hr)

End of computations, Total Study Area = 3.91 (Ac.)

The following figures may
be used for a unit hydrograph study of the same area.

Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction(Ap) = 1.000 Area averaged SCS curve number = 86.0

```
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2014 Version 9.0
      Rational Hydrology Study Date: 03/11/20
______
1815 STATE ROUTE 58 NEW GAS STATION & FOOD MART
EXISTING CONDITION
100 YEAR STORM EVENT
SUBAREA E-1
Program License Serial Number 6364
******* Hydrology Study Control Information ********
______
Rational hydrology study storm event year is 100.0
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.030 (In.)
Slope used for rainfall intensity curve b = 0.7000
Soil antecedent moisture condition (AMC) = 3
Process from Point/Station 100.000 to Point/Station 101.000
**** INITIAL AREA EVALUATION ****
UNDEVELOPED (poor cover) subarea
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 86.00
Adjusted SCS curve number for AMC 3 = 97.20
Pervious ratio(Ap) = 1.0000 Max loss rate(Fm)= 0.055(In/Hr)
Initial subarea data:
Initial area flow distance = 713.000(Ft.)
Top (of initial area) elevation = 453.000(Ft.)
Bottom (of initial area) elevation = 449.000(Ft.)
Difference in elevation = 4.000(Ft.)
Slope = 0.00561 \text{ s}(\%) = 0.56
TC = k(0.525)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 20.493 min.
Rainfall intensity = 2.185(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.877
```

Subarea runoff = 7.494(CFS)

Total initial stream area = 3.910(Ac.)

Pervious area fraction = 1.000

Initial area Fm value = 0.055(In/Hr)

End of computations, Total Study Area = 3.91 (Ac.)

The following figures may
be used for a unit hydrograph study of the same area.

Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction(Ap) = 1.000 Area averaged SCS curve number = 86.0

APPENDIX D

Hydrology Study – Proposed Conditions

10-year storm event 100-year storm event

```
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2014 Version 9.0
      Rational Hydrology Study Date: 03/11/20
______
1815 STATE ROUTE 58 NEW GAS STATION & FOOD MART
PROPOSED CONDTION
10 YEAR STORM EVENT
SUBAREA A-1 TO A-6
Program License Serial Number 6364
******* Hydrology Study Control Information ********
______
Rational hydrology study storm event year is 10.0
Computed rainfall intensity:
Storm year =
            10.00 1 hour rainfall = 0.600 (In.)
Slope used for rainfall intensity curve b = 0.7000
Soil antecedent moisture condition (AMC) = 2
Process from Point/Station 10.000 to Point/Station 11.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.055(In/Hr)
Initial subarea data:
Initial area flow distance = 241.000(Ft.)
Top (of initial area) elevation = 452.900(Ft.)
Bottom (of initial area) elevation = 451.600(Ft.)
Difference in elevation = 1.300(Ft.)
Slope = 0.00539 \text{ s(\%)} =
                         0.54
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 7.750 min.
Rainfall intensity = 2.514(In/Hr) for a
                                        10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.880
Subarea runoff = 1.062(CFS)
```

```
Total initial stream area =
                              0.480(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.055(In/Hr)
Process from Point/Station 11.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 448.000(Ft.)
Downstream point/station elevation = 446.400(Ft.)
Pipe length = 242.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 1.062(CFS)
Nearest computed pipe diameter = 9.00(In.)
Calculated individual pipe flow = 1.062(CFS)
                                 1.062(CFS)
Normal flow depth in pipe = 6.04(In.)
Flow top width inside pipe = 8.46(In.)
Critical Depth =
                 5.68(In.)
Pipe flow velocity = 3.38(Ft/s)
Travel time through pipe = 1.19 min.
Time of concentration (TC) = 8.94 min.
Process from Point/Station 11.000 to Point/Station
                                                      13,000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 0.480(Ac.)
Runoff from this stream =
                          1.062(CFS)
Time of concentration =
                      8.94 min.
Rainfall intensity = 2.274(In/Hr)
Area averaged loss rate (Fm) = 0.0548(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Process from Point/Station
                            12.000 to Point/Station
                                                      13.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.055(In/Hr)
Initial subarea data:
Initial area flow distance = 185.000(Ft.)
Top (of initial area) elevation = 450.300(Ft.)
```

```
Bottom (of initial area) elevation = 449.300(Ft.)
Difference in elevation =
                           1.000(Ft.)
Slope =
         0.00541 s(\%) =
                             0.54
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration =
                                    6.969 min.
Rainfall intensity =
                       2.708(In/Hr) for a
                                           10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.882
Subarea runoff =
                    1.289(CFS)
Total initial stream area =
                               0.540(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.055(In/Hr)
Process from Point/Station
                              12.000 to Point/Station
                                                         13.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area =
                     0.540(Ac.)
Runoff from this stream =
                            1.289(CFS)
Time of concentration =
                       6.97 min.
Rainfall intensity = 2.708(In/Hr)
Area averaged loss rate (Fm) = 0.0548(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
Stream Flow rate Area
                        TC Fm
                                        Rainfall Intensity
                        (min) (In/Hr)
No.
      (CFS) (Ac.)
                                        (In/Hr)
1
      1.06
              0.480
                        8.94
                                          2.274
                               0.055
2
      1.29
              0.540
                        6.97
                               0.055
                                          2.708
Qmax(1) =
          1.000 * 1.000 *
                               1.062) +
                               1.289) + =
          0.836 * 1.000 *
                                              2.141
Qmax(2) =
          1.196 * 0.779 *
                               1.062) +
          1.000 *
                    1.000 *
                               1.289) + =
                                              2.279
Total of 2 streams to confluence:
Flow rates before confluence point:
      1.062
                 1.289
Maximum flow rates at confluence using above data:
                   2,279
       2.141
Area of streams before confluence:
       0.480
                   0.540
Effective area values after confluence:
                   0.914
       1.020
Results of confluence:
Total flow rate = 2.279(CFS)
```

```
Time of concentration = 6.969 min.
Effective stream area after confluence =
                                       0.914(Ac.)
Study area average Pervious fraction(Ap) = 0.100
Study area average soil loss rate(Fm) = 0.055(In/Hr)
Study area total (this main stream) =
                                   1.02(Ac.)
Process from Point/Station
                         13.000 to Point/Station
                                                      30.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 446.400(Ft.)
Downstream point/station elevation = 445.500(Ft.)
Pipe length = 176.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow =
                                     2.279(CFS)
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow = 2.279(CFS)
Normal flow depth in pipe = 8.86(In.)
Flow top width inside pipe =
                          10.55(In.)
Critical Depth =
                 7.75(In.)
Pipe flow velocity =
                      3.67(Ft/s)
Travel time through pipe = 0.80 min.
Time of concentration (TC) = 7.77 \text{ min.}
Process from Point/Station
                            13.000 to Point/Station
                                                      30,000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area =
                    0.914(Ac.)
Runoff from this stream =
                          2.279(CFS)
Time of concentration = 7.77 min.
                    2.510(In/Hr)
Rainfall intensity =
Area averaged loss rate (Fm) = 0.0548(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Program is now starting with Main Stream No. 2
Process from Point/Station
                            14.000 to Point/Station
                                                      15.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
```

```
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.055(In/Hr)
Initial subarea data:
Initial area flow distance = 299.000(Ft.)
Top (of initial area) elevation = 452.200(Ft.)
Bottom (of initial area) elevation = 449.200(Ft.)
Difference in elevation =
                         3.000(Ft.)
Slope =
         0.01003 \text{ s(\%)} =
                           1.00
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 7.462 min.
Rainfall intensity =
                      2.581(In/Hr) for a
                                         10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.881
Subarea runoff =
                  2.228(CFS)
Total initial stream area =
                              0.980(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.055(In/Hr)
Process from Point/Station
                           15.000 to Point/Station
                                                      20.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 446.700(Ft.)
Downstream point/station elevation = 445.700(Ft.)
Pipe length = 191.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow =
                                     2.228(CFS)
Nearest computed pipe diameter =
                                12.00(In.)
Calculated individual pipe flow =
                                2.228(CFS)
Normal flow depth in pipe = 8.61(In.)
Flow top width inside pipe =
                          10.80(In.)
Critical Depth =
              7.66(In.)
Pipe flow velocity =
                      3.69(Ft/s)
Travel time through pipe = 0.86 min.
Time of concentration (TC) = 8.32 min.
Process from Point/Station
                           15.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 1
Stream flow area =
                    0.980(Ac.)
Runoff from this stream =
                          2.228(CFS)
Time of concentration =
                       8.32 min.
Rainfall intensity = 2.391(In/Hr)
Area averaged loss rate (Fm) = 0.0548(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Process from Point/Station
                           16.000 to Point/Station
                                                      17,000
```

```
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.055(In/Hr)
Initial subarea data:
Initial area flow distance = 75.000(Ft.)
Top (of initial area) elevation = 450.500(Ft.)
Bottom (of initial area) elevation = 450.200(Ft.)
Difference in elevation = 0.300(Ft.)
Slope =
          0.00400 s(\%) =
                             0.40
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 5.158 min.
Rainfall intensity = 3.343(In/Hr) for a
                                            10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.885
Subarea runoff =
                    0.266(CFS)
Total initial stream area =
                                0.090(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.055(In/Hr)
Process from Point/Station
                             17.000 to Point/Station
                                                          20,000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation =
                                 446.400(Ft.)
Downstream point/station elevation = 445.700(Ft.)
Pipe length = 127.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Nequiles F=F

Nearest computed pipe diameter = 6.00(In.)

1. ideal pipe flow = 0.266(CFS)
No. of pipes = 1 Required pipe flow =
                                        0.266(CFS)
Normal flow depth in pipe = 3.49(In.)
Flow top width inside pipe = 5.92(In.)
Critical Depth =
                  3.12(In.)
Pipe flow velocity =
                       2.25(Ft/s)
Travel time through pipe = 0.94 min.
Time of concentration (TC) = 6.10 min.
Process from Point/Station
                              17.000 to Point/Station
                                                          20.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 2
Stream flow area = 0.090(Ac.)
Runoff from this stream = 0.266(CFS)
```

```
Time of concentration = 6.10 min.
Rainfall intensity =
                      2.973(In/Hr)
Area averaged loss rate (Fm) = 0.0548(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
Stream Flow rate
                                        Rainfall Intensity
                  Area TC
                                Fm
No.
      (CFS) (Ac.)
                        (min) (In/Hr)
                                         (In/Hr)
1
      2.23
              0.980
                        8.32
                               0.055
                                         2.391
              0.090
                        6.10
                                         2.973
      0.27
                               0.055
Qmax(1) =
         1.000 * 1.000 *
                               2.228) +
         0.801 * 1.000 *
                               0.266) + =
                                              2.442
Qmax(2) =
         1.249 * 0.733 *
                               2.228) +
         1.000 *
                   1.000 *
                              0.266) + =
                                              2.306
Total of 2 streams to confluence:
Flow rates before confluence point:
      2.228
                 0.266
Maximum flow rates at confluence using above data:
       2.442
                   2.306
Area of streams before confluence:
       0.980
                  0.090
Effective area values after confluence:
       1.070
                   0.808
Results of confluence:
Total flow rate =
                    2.442(CFS)
Time of concentration =
                       8.324 min.
Effective stream area after confluence =
                                        1.070(Ac.)
Study area average Pervious fraction(Ap) = 0.100
Study area average soil loss rate(Fm) = 0.055(In/Hr)
Study area total (this main stream) =
                                      1.07(Ac.)
Process from Point/Station
                              20.000 to Point/Station
                                                         30.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
                     1.070(Ac.)
Stream flow area =
Runoff from this stream =
                            2.442(CFS)
Time of concentration =
                        8.32 min.
Rainfall intensity = 2.391(In/Hr)
Area averaged loss rate (Fm) = 0.0548(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
```

```
Stream Flow rate
                  Area TC
                                         Rainfall Intensity
                                Fm
No.
      (CFS) (Ac.)
                         (min) (In/Hr)
                                          (In/Hr)
      2.28
              0.914
                         7.77
                                0.055
                                          2.510
      2.44
              1.070
                         8.32
                                0.055
                                         2.391
Qmax(1) =
          1.000 * 1.000 *
                               2.279) +
          1.051 * 0.933 *
                               2.442) + =
                                               4.673
Qmax(2) =
          0.952 * 1.000 *
                               2.279) +
          1.000 *
                    1.000 *
                               2.442) + =
                                               4.611
Total of 2 main streams to confluence:
Flow rates before confluence point:
      3.279
                 3.442
Maximum flow rates at confluence using above data:
       4.673
                   4.611
Area of streams before confluence:
       0.914
               1.070
Effective area values after confluence:
                  1.984
       1.913
Results of confluence:
                     4.673(CFS)
Total flow rate =
Time of concentration =
                        7.769 min.
Effective stream area after confluence =
                                           1.913(Ac.)
Study area average Pervious fraction(Ap) = 0.100
Study area average soil loss rate(Fm) = 0.055(In/Hr)
Study area total = 1.98(Ac.)
Process from Point/Station 30.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation =
                                  445.500(Ft.)
Downstream point/station elevation = 445.300(Ft.)
Pipe length =
                38.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 4.673(CFS)
Nearest computed pipe diameter = 15.00(In.)
Calculated individual pipe flow = 4.673(CFS)
Normal flow depth in pipe = 12.26(In.)
Flow top width inside pipe = 11.60(In.)
Critical Depth =
                 10.51(In.)
Pipe flow velocity =
                        4.35(Ft/s)
Travel time through pipe = 0.15 min.
Time of concentration (TC) = 7.91 \text{ min.}
```

```
Process from Point/Station 30.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 1.913(Ac.)
Runoff from this stream =
                          4.673(CFS)
Time of concentration =
                      7.91 min.
Rainfall intensity =
                     2.477(In/Hr)
Area averaged loss rate (Fm) = 0.0548(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Process from Point/Station
                           18.000 to Point/Station
                                                     19.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.055(In/Hr)
Initial subarea data:
Initial area flow distance = 267.000(Ft.)
Top (of initial area) elevation = 449.900(Ft.)
Bottom (of initial area) elevation = 448.800(Ft.)
Difference in elevation =
                         1.100(Ft.)
Slope =
         0.00412 s(\%) =
                           0.41
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration =
                                  8.521 min.
Rainfall intensity = 2.352(In/Hr) for a
                                         10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.879
Subarea runoff =
                  1.365(CFS)
Total initial stream area =
                             0.660(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.055(In/Hr)
Process from Point/Station 19.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 445.600(Ft.)
Downstream point/station elevation = 445.300(Ft.)
Pipe length = 44.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 1.365(CFS)
```

```
Nearest computed pipe diameter = 9.00(In.)
Calculated individual pipe flow = 1.365(CFS)
                                   1.365(CFS)
Normal flow depth in pipe = 9.00(In.)
Flow top width inside pipe =
                            0.00(In.)
Critical Depth = 6.46(In.)
Pipe flow velocity =
                       3.09(Ft/s)
Travel time through pipe = 0.24 min.
Time of concentration (TC) = 8.76 min.
Process from Point/Station 19.000 to Point/Station
                                                         40.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.660(Ac.)
Runoff from this stream =
                            1.365(CFS)
Time of concentration =
                        8.76 min.
Rainfall intensity = 2.308(In/Hr)
Area averaged loss rate (Fm) = 0.0548(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
                       TC Fm
Stream Flow rate Area
                                        Rainfall Intensity
No. (CFS) (Ac.) (min) (In/Hr) (In/Hr)
      4.67
1
              1.913
                       7.91
                               0.055
                                        2,477
              0.660
      1.36
                        8.76 0.055 2.308
Qmax(1) =
          1.000 * 1.000 *
                               4.673) +
          1.075 * 0.904 *
                               1.365) + =
                                              5.999
Qmax(2) =
         0.930 * 1.000 *
                               4.673) +
          1.000 * 1.000 *
                               1.365) + =
                                              5.711
Total of 2 streams to confluence:
Flow rates before confluence point:
      4.673
                 1.365
Maximum flow rates at confluence using above data:
       5.999
                  5.711
Area of streams before confluence:
       1.913
                  0.660
Effective area values after confluence:
       2.509
                  2.573
Results of confluence:
Total flow rate =
                    5.999(CFS)
Time of concentration =
                         7.914 min.
Effective stream area after confluence = 2.509(Ac.)
Study area average Pervious fraction(Ap) = 0.100
```

```
Study area average soil loss rate(Fm) = 0.055(In/Hr)
Study area total (this main stream) =
                                    2.57(Ac.)
Process from Point/Station
                           40.000 to Point/Station
                                                     200.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 445.300(Ft.)
Downstream point/station elevation = 445.100(Ft.)
Pipe length =
               49.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 5.999(CFS)
Nearest computed pipe diameter = 18.00(In.)
Calculated individual pipe flow =
                                5.999(CFS)
Normal flow depth in pipe = 13.27(In.)
Flow top width inside pipe = 15.85(In.)
Critical Depth = 11.35(In.)
Pipe flow velocity =
                      4.29(Ft/s)
Travel time through pipe = 0.19 min.
Time of concentration (TC) =
                         8.10 min.
Process from Point/Station
                            40.000 to Point/Station
                                                     200.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area =
                    2.509(Ac.)
Runoff from this stream =
                          5.999(CFS)
Time of concentration =
                      8.10 min.
Rainfall intensity =
                    2.436(In/Hr)
Area averaged loss rate (Fm) = 0.0548(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Program is now starting with Main Stream No. 2
Process from Point/Station
                            21.000 to Point/Station
                                                     200.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.055(In/Hr)
Initial subarea data:
Initial area flow distance = 276.000(Ft.)
```

```
Top (of initial area) elevation = 450.500(Ft.)
Bottom (of initial area) elevation = 445.100(Ft.)
Difference in elevation =
                           5.400(Ft.)
Slope =
          0.01957 s(\%) =
                             1.96
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration =
                                    6.323 min.
Rainfall intensity =
                   2.899(In/Hr) for a
                                            10.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.883
Subarea runoff =
                   2.969(CFS)
Total initial stream area =
                                1.160(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.055(In/Hr)
Process from Point/Station
                              21.000 to Point/Station
                                                        200.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area =
                  1.160(Ac.)
Runoff from this stream =
                            2.969(CFS)
Time of concentration =
                        6.32 min.
Rainfall intensity = 2.899(In/Hr)
Area averaged loss rate (Fm) = 0.0548(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
                       TC
                              Fm
Stream Flow rate
                  Area
                                        Rainfall Intensity
No. (CFS) (Ac.)
                        (min) (In/Hr) (In/Hr)
1
      6.00
              2.509
                       8.10
                                0.055
                                         2.436
      2.97
              1.160
                        6.32
                               0.055
                                          2.899
Qmax(1) =
          1.000 *
                    1.000 *
                               5.999) +
          0.837 * 1.000 *
                               2.969) + =
                                              8.486
Qmax(2) =
          1.194 *
                    0.780 *
                               5.999) +
          1.000 *
                    1.000 *
                               2.969) + =
                                              8.558
Total of 2 main streams to confluence:
Flow rates before confluence point:
      6.999
                 3.969
Maximum flow rates at confluence using above data:
       8.486
                   8.558
Area of streams before confluence:
       2.509
                   1,160
Effective area values after confluence:
       3.669
                   3.118
```

Results of confluence: Total flow rate = 8.558(CFS) Time of concentration = 6.323 min. Effective stream area after confluence = 3.118(Ac.) Study area average Pervious fraction(Ap) = 0.100 Study area average soil loss rate(Fm) = 0.055(In/Hr) Study area total = 3.67(Ac.) End of computations, Total Study Area = 3.91 (Ac.) The following figures may be used for a unit hydrograph study of the same area. Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction(Ap) = 0.100 Area averaged SCS curve number = 69.0

```
CIVILCADD/CIVILDESIGN Engineering Software, (c) 1989-2014 Version 9.0
      Rational Hydrology Study Date: 03/11/20
______
1815 STATE ROUTE 58 NEW GAS STATION & FOOD MART
PROPOSED CONDTION
100 YEAR STORM EVENT
SUBAREA A-1 TO A-6
Program License Serial Number 6364
******* Hydrology Study Control Information ********
______
Rational hydrology study storm event year is 100.0
Computed rainfall intensity:
Storm year = 100.00 1 hour rainfall = 1.030 (In.)
Slope used for rainfall intensity curve b = 0.7000
Soil antecedent moisture condition (AMC) = 3
Process from Point/Station 10.000 to Point/Station 11.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Adjusted SCS curve number for AMC 3 = 86.20
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.026(In/Hr)
Initial subarea data:
Initial area flow distance = 241.000(Ft.)
Top (of initial area) elevation = 452.900(Ft.)
Bottom (of initial area) elevation = 451.600(Ft.)
Difference in elevation = 1.300(Ft.)
Slope = 0.00539 \text{ s(\%)} = 0.54
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 7.750 min.
Rainfall intensity = 4.316(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.895
```

```
Subarea runoff = 1.853(CFS)
Total initial stream area =
                              0.480(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.026(In/Hr)
Process from Point/Station 11.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation =
                                448.000(Ft.)
Downstream point/station elevation = 446.400(Ft.)
Pipe length = 242.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 1.853(CFS)
Nearest computed pipe diameter = 12.00(In.)
Calculated individual pipe flow = 1.853(CFS)
Normal flow depth in pipe = 6.97(In.)
Flow top width inside pipe =
                          11.84(In.)
Critical Depth = 6.96(In.)
Pipe flow velocity =
                      3.91(Ft/s)
Travel time through pipe = 1.03 min.
Time of concentration (TC) = 8.78 min.
Process from Point/Station
                           11.000 to Point/Station
                                                      13.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 0.480(Ac.)
Runoff from this stream =
                          1.853(CFS)
Time of concentration =
                       8.78 min.
Rainfall intensity = 3.954(In/Hr)
Area averaged loss rate (Fm) = 0.0262(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Process from Point/Station
                            12.000 to Point/Station
                                                      13.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Adjusted SCS curve number for AMC 3 = 86.20
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.026(In/Hr)
Initial subarea data:
```

```
Initial area flow distance = 185.000(Ft.)
Top (of initial area) elevation = 450.300(Ft.)
Bottom (of initial area) elevation = 449.300(Ft.)
Difference in elevation =
                           1.000(Ft.)
         0.00541 s(\%) =
                             0.54
Slope =
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 6.969 min.
Rainfall intensity = 4.649(In/Hr) for a
                                           100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.895
Subarea runoff =
                    2.246(CFS)
Total initial stream area =
                                0.540(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.026(In/Hr)
Process from Point/Station
                              12.000 to Point/Station
                                                          13.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.540(Ac.)
Runoff from this stream =
                            2.246(CFS)
Time of concentration =
                        6.97 min.
Rainfall intensity =
                     4.649(In/Hr)
Area averaged loss rate (Fm) =
                               0.0262(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
Stream Flow rate
                  Area
                         TC
                               Fm
                                        Rainfall Intensity
No. (CFS) (Ac.)
                         (min) (In/Hr)
                                        (In/Hr)
1
      1.85
              0.480
                        8.78
                                0.026
                                          3.954
2
      2.25
              0.540
                        6.97
                                0.026
                                          4,649
Qmax(1) =
          1.000 *
                    1.000 *
                               1.853) +
          0.850 * 1.000 *
                               2.246) + =
                                               3.762
Qmax(2) =
          1.177 *
                    0.794 *
                               1.853) +
          1.000 *
                    1.000 *
                               2.246) + =
                                               3.977
Total of 2 streams to confluence:
Flow rates before confluence point:
      1.853
                 2.246
Maximum flow rates at confluence using above data:
       3.762
                   3.977
Area of streams before confluence:
       0.480
                   0.540
Effective area values after confluence:
       1.020
                   0.921
```

```
Results of confluence:
Total flow rate =
                   3.977(CFS)
Time of concentration = 6.969 min.
Effective stream area after confluence =
                                      0.921(Ac.)
Study area average Pervious fraction(Ap) = 0.100
Study area average soil loss rate(Fm) = 0.026(In/Hr)
Study area total (this main stream) =
                                    1.02(Ac.)
Process from Point/Station
                            13.000 to Point/Station
                                                      30.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation =
                               446.400(Ft.)
Downstream point/station elevation = 445.500(Ft.)
Pipe length = 176.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 3.977(CFS)
Nearest computed pipe diameter =
                               15.00(In.)
Calculated individual pipe flow = 3.977(CFS)
Normal flow depth in pipe = 10.73(In.)
Flow top width inside pipe = 13.53(In.)
Critical Depth =
                 9.68(In.)
Pipe flow velocity =
                      4.23(Ft/s)
Travel time through pipe = 0.69 min.
Time of concentration (TC) = 7.66 \text{ min.}
Process from Point/Station
                            13.000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area =
                    0.921(Ac.)
Runoff from this stream =
                          3.977(CFS)
Time of concentration =
                      7.66 min.
Rainfall intensity =
                    4.350(In/Hr)
Area averaged loss rate (Fm) =
                           0.0262(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Program is now starting with Main Stream No. 2
Process from Point/Station
                            14.000 to Point/Station
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
```

```
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Adjusted SCS curve number for AMC 3 = 86.20
Pervious ratio(Ap) = 0.1000
                           Max loss rate(Fm)= 0.026(In/Hr)
Initial subarea data:
Initial area flow distance = 299.000(Ft.)
Top (of initial area) elevation = 452.200(Ft.)
Bottom (of initial area) elevation = 449.200(Ft.)
Difference in elevation =
                          3.000(Ft.)
         0.01003 s(\%) =
Slope =
                            1.00
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 7.462 min.
Rainfall intensity = 4.431(In/Hr) for a 100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.895
Subarea runoff =
                   3.885(CFS)
Total initial stream area =
                               0.980(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.026(In/Hr)
Process from Point/Station 15.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation =
                                446.700(Ft.)
Downstream point/station elevation = 445.700(Ft.)
Pipe length = 191.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 3.885(CFS)
Nearest computed pipe diameter =
                                 15.00(In.)
Calculated individual pipe flow =
                                 3.885(CFS)
Normal flow depth in pipe = 10.44(In.)
Flow top width inside pipe = 13.80(In.)
Critical Depth =
                 9.56(In.)
Pipe flow velocity =
                      4.26(Ft/s)
Travel time through pipe = 0.75 min.
Time of concentration (TC) = 8.21 min.
15.000 to Point/Station
Process from Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 2 in normal stream number 1
Stream flow area = 0.980(Ac.)
Runoff from this stream =
                           3.885(CFS)
Time of concentration =
                       8.21 min.
Rainfall intensity = 4.145(In/Hr)
Area averaged loss rate (Fm) = 0.0262(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
```

```
Process from Point/Station
                              16.000 to Point/Station
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Adjusted SCS curve number for AMC 3 = 86.20
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.026(In/Hr)
Initial subarea data:
Initial area flow distance = 75.000(Ft.)
Top (of initial area) elevation = 450.500(Ft.)
Bottom (of initial area) elevation = 450.200(Ft.)
Difference in elevation =
                           0.300(Ft.)
Slope = 0.00400 \text{ s(\%)} =
                             0.40
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 5.158 min.
Rainfall intensity = 5.739(In/Hr) for a
                                          100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.896
Subarea runoff =
                   0.463(CFS)
Total initial stream area =
                                0.090(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.026(In/Hr)
Process from Point/Station 17.000 to Point/Station
                                                         20.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation =
                                 446.400(Ft.)
Downstream point/station elevation = 445.700(Ft.)
Pipe length = 127.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 0.463(CFS)
Nearest computed pipe diameter = 9.00(In.)
Calculated individual pipe flow = 0.463(CFS)
Normal flow depth in pipe = 3.83(In.)
Flow top width inside pipe =
                           8.90(In.)
Critical Depth =
                  3.68(In.)
Pipe flow velocity =
                       2.59(Ft/s)
Travel time through pipe = 0.82 min.
Time of concentration (TC) = 5.98 min.
Process from Point/Station 17.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
```

```
Along Main Stream number: 2 in normal stream number 2
Stream flow area =
                  0.090(Ac.)
Runoff from this stream =
                            0.463(CFS)
Time of concentration =
                         5.98 min.
Rainfall intensity =
                       5.176(In/Hr)
Area averaged loss rate (Fm) = 0.0262(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
Stream Flow rate
                                Fm
                  Area
                         TC
                                        Rainfall Intensity
      (CFS) (Ac.)
No.
                         (min) (In/Hr)
                                          (In/Hr)
1
      3.89
              0.980
                        8.21
                                0.026
                                          4.145
      0.46
              0.090
                         5.98
                                0.026
                                          5.176
Qmax(1) =
          1.000 *
                    1.000 *
                               3.885) +
          0.800 *
                    1.000 *
                               0.463) + =
                                               4.256
Qmax(2) =
          1.250 *
                    0.728 *
                               3.885) +
          1.000 *
                    1.000 *
                               0.463) + =
                                               4.000
Total of 2 streams to confluence:
Flow rates before confluence point:
      3.885
                 0.463
Maximum flow rates at confluence using above data:
       4,256
                   4.000
Area of streams before confluence:
       0.980
                   0.090
Effective area values after confluence:
       1.070
                   0.803
Results of confluence:
Total flow rate =
                     4.256(CFS)
Time of concentration =
                        8.209 min.
Effective stream area after confluence =
                                          1.070(Ac.)
Study area average Pervious fraction(Ap) = 0.100
Study area average soil loss rate(Fm) = 0.026(In/Hr)
Study area total (this main stream) =
                                       1.07(Ac.)
Process from Point/Station
                              20.000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area =
                      1.070(Ac.)
Runoff from this stream = 4.256(CFS)
Time of concentration = 8.21 min.
```

```
Rainfall intensity = 4.145(In/Hr)
Area averaged loss rate (Fm) = 0.0262(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
                              Fm
Stream Flow rate
                  Area
                       TC
                                       Rainfall Intensity
No. (CFS) (Ac.)
                        (min) (In/Hr)
                                       (In/Hr)
1
      3.98
              0.921
                       7.66
                               0.026
                                        4.350
2
      4.26
              1.070
                        8.21
                              0.026
                                        4.145
Qmax(1) =
          1.000 * 1.000 *
                               3.977) +
          1.050 * 0.933 *
                              4.256) + =
                                              8.147
Qmax(2) =
          0.953 * 1.000 *
                               3.977) +
          1.000 * 1.000 *
                              4.256) + =
                                              8.044
Total of 2 main streams to confluence:
Flow rates before confluence point:
      4.977
                 5.256
Maximum flow rates at confluence using above data:
                  8.044
       8.147
Area of streams before confluence:
       0.921
                  1.070
Effective area values after confluence:
       1.920
                   1.991
Results of confluence:
Total flow rate = 8.147(CFS)
Time of concentration =
                       7.662 min.
Effective stream area after confluence =
                                          1.920(Ac.)
Study area average Pervious fraction(Ap) = 0.100
Study area average soil loss rate(Fm) = 0.026(In/Hr)
Study area total = 1.99(Ac.)
Process from Point/Station 30.000 to Point/Station
                                                         40.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 445.500(Ft.)
Downstream point/station elevation = 445.300(Ft.)
Pipe length = 38.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 8.147(CFS)
Nearest computed pipe diameter = 21.00(In.)
Calculated individual pipe flow = 8.147(CFS)
Normal flow depth in pipe = 13.05(In.)
Flow top width inside pipe = 20.37(In.)
```

```
Critical Depth = 12.71(In.)
Pipe flow velocity = 5.18(Ft/s)
Travel time through pipe = 0.12 min.
Time of concentration (TC) = 7.78 \text{ min.}
Process from Point/Station
                            30.000 to Point/Station
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 1
Stream flow area = 1.920(Ac.)
Runoff from this stream =
                          8.147(CFS)
Time of concentration =
                       7.78 min.
Rainfall intensity = 4.302(In/Hr)
Area averaged loss rate (Fm) = 0.0262(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Process from Point/Station
                            18.000 to Point/Station
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Adjusted SCS curve number for AMC 3 = 86.20
Pervious ratio(Ap) = 0.1000 Max loss rate(Fm)= 0.026(In/Hr)
Initial subarea data:
Initial area flow distance = 267.000(Ft.)
Top (of initial area) elevation = 449.900(Ft.)
Bottom (of initial area) elevation = 448.800(Ft.)
Difference in elevation =
                         1.100(Ft.)
Slope = 0.00412 \text{ s(\%)} =
                           0.41
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration =
                                  8.521 min.
Rainfall intensity = 4.038(In/Hr) for a
                                        100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.894
Subarea runoff =
                  2.383(CFS)
Total initial stream area =
                              0.660(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.026(In/Hr)
Process from Point/Station 19.000 to Point/Station
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
```

```
Upstream point/station elevation = 445.600(Ft.)
Downstream point/station elevation = 445.300(Ft.)
Pipe length = 44.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow = 2.383(CFS)
Nearest computed pipe diameter =
                                  12.00(In.)
Calculated individual pipe flow = 2.383(CFS)
Normal flow depth in pipe = 8.19(In.)
Flow top width inside pipe = 11.17(In.)
Critical Depth =
                 7.93(In.)
Pipe flow velocity =
                       4.17(Ft/s)
Travel time through pipe = 0.18 min.
Time of concentration (TC) = 8.70 min.
Process from Point/Station
                             19.000 to Point/Station
                                                        40.000
**** CONFLUENCE OF MINOR STREAMS ****
Along Main Stream number: 1 in normal stream number 2
Stream flow area = 0.660(Ac.)
Runoff from this stream =
                           2.383(CFS)
Time of concentration =
                        8.70 min.
Rainfall intensity = 3.981(In/Hr)
Area averaged loss rate (Fm) = 0.0262(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
                      TC
                              Fm
Stream Flow rate
                 Area
                                       Rainfall Intensity
No. (CFS) (Ac.)
                       (min) (In/Hr) (In/Hr)
1
      8.15
              1.920
                       7.78
                               0.026
                                        4.302
2
      2.38
              0.660
                        8.70
                               0.026
                                         3.981
Qmax(1) =
                              8.147) +
         1.000 *
                   1.000 *
         1.081 * 0.895 *
                              2.383) + =
                                            10.453
Qmax(2) =
         0.925 *
                   1.000 *
                              8.147) +
         1.000 *
                   1.000 *
                              2.383) + =
                                             9.918
Total of 2 streams to confluence:
Flow rates before confluence point:
      8.147
                2.383
Maximum flow rates at confluence using above data:
      10.453
                  9.918
Area of streams before confluence:
       1.920
                  0.660
Effective area values after confluence:
       2.510
                  2.580
```

```
Results of confluence:
Total flow rate =
                  10.453(CFS)
Time of concentration =
                      7.784 min.
Effective stream area after confluence =
                                     2.510(Ac.)
Study area average Pervious fraction(Ap) = 0.100
Study area average soil loss rate(Fm) = 0.026(In/Hr)
Study area total (this main stream) =
                                    2.58(Ac.)
Process from Point/Station
                            40.000 to Point/Station
                                                     200.000
**** PIPEFLOW TRAVEL TIME (Program estimated size) ****
Upstream point/station elevation = 445.300(Ft.)
Downstream point/station elevation = 445.100(Ft.)
Pipe length = 49.00(Ft.) Manning's N = 0.013
No. of pipes = 1 Required pipe flow =
                                    10.453(CFS)
Nearest computed pipe diameter =
                               24.00(In.)
Calculated individual pipe flow = 10.453(CFS)
Normal flow depth in pipe = 15.12(In.)
Flow top width inside pipe = 23.18(In.)
Critical Depth = 13.89(In.)
Pipe flow velocity =
                      5.01(Ft/s)
Travel time through pipe = 0.16 min.
Time of concentration (TC) = 7.95 \text{ min.}
Process from Point/Station
                            40.000 to Point/Station
                                                     200.000
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 1
Stream flow area =
                    2.510(Ac.)
Runoff from this stream =
                         10.453(CFS)
                      7.95 min.
Time of concentration =
Rainfall intensity =
                    4.240(In/Hr)
Area averaged loss rate (Fm) =
                           0.0262(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Program is now starting with Main Stream No. 2
Process from Point/Station
                            21.000 to Point/Station
                                                     200.000
**** INITIAL AREA EVALUATION ****
COMMERCIAL subarea type
Decimal fraction soil group A = 0.000
Decimal fraction soil group B = 0.000
Decimal fraction soil group C = 1.000
```

```
Decimal fraction soil group D = 0.000
SCS curve number for soil(AMC 2) = 69.00
Adjusted SCS curve number for AMC 3 = 86.20
Pervious ratio(Ap) = 0.1000
                             Max loss rate(Fm)= 0.026(In/Hr)
Initial subarea data:
Initial area flow distance =
                            276.000(Ft.)
Top (of initial area) elevation = 450.500(Ft.)
Bottom (of initial area) elevation = 445.100(Ft.)
Difference in elevation =
                            5.400(Ft.)
          0.01957 s(\%) =
Slope =
                             1.96
TC = k(0.304)*[(length^3)/(elevation change)]^0.2
Initial area time of concentration = 6.323 min.
Rainfall intensity = 4.976(In/Hr) for a
                                           100.0 year storm
Effective runoff coefficient used for area (Q=KCIA) is C = 0.895
Subarea runoff =
                    5.168(CFS)
Total initial stream area =
                                1.160(Ac.)
Pervious area fraction = 0.100
Initial area Fm value = 0.026(In/Hr)
Process from Point/Station
                              21.000 to Point/Station
**** CONFLUENCE OF MAIN STREAMS ****
The following data inside Main Stream is listed:
In Main Stream number: 2
Stream flow area =
                      1.160(Ac.)
Runoff from this stream =
                             5.168(CFS)
Time of concentration =
                         6.32 min.
Rainfall intensity =
                      4.976(In/Hr)
Area averaged loss rate (Fm) = 0.0262(In/Hr)
Area averaged Pervious ratio (Ap) = 0.1000
Summary of stream data:
Stream Flow rate
                  Area
                         TC
                                         Rainfall Intensity
                                \mathsf{Fm}
       (CFS) (Ac.)
                         (min) (In/Hr)
No.
                                          (In/Hr)
                         7.95
1
     10.45
              2.510
                                0.026
                                          4.240
      5.17
              1.160
                         6.32
                                0.026
                                          4.976
Qmax(1) =
          1.000 *
                    1.000 *
                              10.453) +
          0.851 *
                    1.000 *
                              5.168) + =
                                              14.853
Qmax(2) =
          1.175 *
                   0.796 *
                              10.453) +
          1.000 *
                    1.000 *
                               5.168) + =
                                              14.937
Total of 2 main streams to confluence:
Flow rates before confluence point:
     11,453
                 6.168
```

Maximum flow rates at confluence using above data:

14.853 14.937

Area of streams before confluence:

2.510 1.160

Effective area values after confluence:

3.670 3.157

Results of confluence:

Total flow rate = 14.937(CFS)

Time of concentration = 6.323 min.

Effective stream area after confluence = 3.157(Ac.)

Study area average Pervious fraction(Ap) = 0.100

Study area average soil loss rate(Fm) = 0.026(In/Hr)

Study area total = 3.67(Ac.)

End of computations, Total Study Area = 3.91 (Ac.)

The following figures may

be used for a unit hydrograph study of the same area.

Note: These figures do not consider reduced effective area effects caused by confluences in the rational equation.

Area averaged pervious area fraction(Ap) = 0.100 Area averaged SCS curve number = 69.0

APPENDIX E

Hydraulic Calculations Catch Basin Capacity Calculations Storm Drain Line A Capacity Calculations

1815 BORON NEW GAS STATION SUMP CONDITION

	Grated Inlet (Weir Condition) at Sump						
Catch Basin #	Perimeter (Feet)	Allowed Depth (Inches)	% Opening of Grate	Full Capacity (cfs)	Half-Clogged Capacity (cfs)	Design Q-100 (cfs)	Safety Factor
CB #1	10	4	0.75	4.33	2.17	1.85	1.2
CB #2	10	6	0.75	7.95	3.98	3.98	1.0
CB #3	10	6	0.75	7.95	3.98	3.89	1.0
CB #4	10	2	0.75	1.53	0.77	0.46	1.7
CB #5	10	5	0.75	6.05	3.03	2.38	1.3

USE WEIR FORMULA

 $Q = cb\sqrt{2g}H^{3/2}$

(C=0.373, RECTANGULAR SHAPE)

Storm Drain Line A-1 Worksheet for Circular Channel

Project Description	
Project File	c:\haestad\fmw\1815.fm2
Worksheet	Storm Drain Capacity
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

Input Data		
Mannings Coefficient	0.009	
Channel Slope	0.0050	00 ft/ft
Depth	0.83	ft
Diameter	10.00	in

Results		
Discharge	2.30	cfs
Flow Area	0.55	ft²
Wetted Perimeter	2.51	ft
Top Width	0.11	ft
Critical Depth	0.68	ft
Percent Full	99.60	
Critical Slope	0.005362 ft/ft	
Velocity	4.22	ft/s
Velocity Head	0.28	ft
Specific Energy	1.11	ft
Froude Number	0.33	
Maximum Discharge	2.41	cfs
Full Flow Capacity	2.24	cfs
Full Flow Slope	0.0052	74 ft/ft
Flow is subcritical.		

Storm Drain Line A-2 Worksheet for Circular Channel

Project Description	
Project File	c:\haestad\fmw\1815.fm2
Worksheet	Storm Drain Capacity
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

Input Data		
Mannings Coefficient	0.009	
Channel Slope	0.0050	00 ft/ft
Depth	1.25	ft
Diameter	15.00	in

Results		
Discharge	6.60	cfs
Flow Area	1.23	ft²
Wetted Perimeter	3.93	ft
Top Width	0.33e-7	ft
Critical Depth	1.03	ft
Percent Full	100.00	
Critical Slope	0.00492	1 ft/ft
Velocity	5.38	ft/s
Velocity Head	0.45	ft
Specific Energy	1.70	ft
Froude Number	0.16e-3	
Maximum Discharge	7.10	cfs
Full Flow Capacity	6.60	cfs
Full Flow Slope	0.00500	O ft/ft
Flow is subcritical.		

Storm Drain Line A-3 Worksheet for Circular Channel

Project Description	
Project File	c:\haestad\fmw\1815.fm2
Worksheet	Storm Drain Capacity
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

Input Data		
Mannings Coefficient	0.009	
Channel Slope	0.0050	00 ft/ft
Depth	1.25	ft
Diameter	15.00	in

Danilla		
Results		
Discharge	6.60	cfs
Flow Area	1.23	ft²
Wetted Perimeter	3.93	ft
Top Width	0.33e-7	ft
Critical Depth	1.03	ft
Percent Full	100.00	
Critical Slope	0.00492	1 ft/ft
Velocity	5.38	ft/s
Velocity Head	0.45	ft
Specific Energy	1.70	ft
Froude Number	0.16e-3	
Maximum Discharge	7.10	cfs
Full Flow Capacity	6.60	cfs
Full Flow Slope	0.00500	O ft/ft
Flow is subcritical.		

Storm Drain Line A-4 Worksheet for Circular Channel

Project Description	
Project File	c:\haestad\fmw\1815.fm2
Worksheet	Storm Drain Capacity
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

Input Data		
Mannings Coefficient	0.009	
Channel Slope	0.0050	00 ft/ft
Depth	0.67	ft
Diameter	8.00	in

Results		
Discharge	1.23	cfs
Flow Area	0.35	ft²
Wetted Perimeter	2.09	ft
Top Width	0.00	ft
Critical Depth	0.53	ft
Percent Full	100.00	
Critical Slope	0.0053	83 ft/ft
Velocity	3.54	ft/s
Velocity Head	0.19	ft
Specific Energy	FULL	ft
Froude Number	FULL	
Maximum Discharge	1.33	cfs
Full Flow Capacity	1.23	cfs
Full Flow Slope	0.0050	00 ft/ft

Storm Drain Line A-5 Worksheet for Circular Channel

Project Description	
Project File	c:\haestad\fmw\1815.fm2
Worksheet	Storm Drain Capacity
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

Input Data		
Mannings Coefficient	0.009	
Channel Slope	0.0050	00 ft/ft
Depth	1.25	ft
Diameter	15.00	in

Results		
Discharge	6.60	cfs
Flow Area	1.23	ft²
Wetted Perimeter	3.93	ft
Top Width	0.33e-7	ft
Critical Depth	1.03	ft
Percent Full	100.00	
Critical Slope	0.00492	1 ft/ft
Velocity	5.38	ft/s
Velocity Head	0.45	ft
Specific Energy	1.70	ft
Froude Number	0.16e-3	
Maximum Discharge	7.10	cfs
Full Flow Capacity	6.60	cfs
Full Flow Slope	0.00500	O ft/ft
Flow is subcritical.		

Storm Drain Line A-6 Worksheet for Circular Channel

Project Description	
Project File	c:\haestad\fmw\1815.fm2
Worksheet	Storm Drain Capacity
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

Input Data		
Mannings Coefficient	0.009	
Channel Slope	0.0050	00 ft/ft
Depth	1.50	ft
Diameter	18.00	in

Results		
Discharge	10.73	cfs
Flow Area	1.77	ft²
Wetted Perimeter	4.71	ft
Top Width	0.37e-7	ft
Critical Depth	1.26	ft
Percent Full	100.00	
Critical Slope	0.00481	4 ft/ft
Velocity	6.07	ft/s
Velocity Head	0.57	ft
Specific Energy	2.07	ft
Froude Number	0.15e-3	
Maximum Discharge	11.54	cfs
Full Flow Capacity	10.73	cfs
Full Flow Slope	0.005000	O ft/ft
Flow is subcritical.		

Storm Drain Line A-7 Worksheet for Circular Channel

Project Description	
Project File	c:\haestad\fmw\1815.fm2
Worksheet	Storm Drain Capacity
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

Input Data		
Mannings Coefficient	0.009	
Channel Slope	0.0050	00 ft/ft
Depth	1.00	ft
Diameter	12.00	in

Results			
Discharge	3.64	cfs	
Flow Area	0.79	ft²	
Wetted Perimeter	3.14	ft	
Top Width	0.00	ft	
Critical Depth	0.81	ft	
Percent Full	100.00		
Critical Slope	0.0050	67 ft/ft	
Velocity	4.63	ft/s	
Velocity Head	0.33	ft	
Specific Energy	FULL	ft	
Froude Number	FULL		
Maximum Discharge	3.91	cfs	
Full Flow Capacity	3.64	cfs	
Full Flow Slope	0.0050	00 ft/ft	

Storm Drain Line A-8 Worksheet for Circular Channel

Project Description	
Project File	c:\haestad\fmw\1815.fm2
Worksheet	Storm Drain Capacity
Flow Element	Circular Channel
Method	Manning's Formula
Solve For	Discharge

Input Data		
Mannings Coefficient	0.009	
Channel Slope	0.0050	00 ft/ft
Depth	1.50	ft
Diameter	18.00	in

Results		
Discharge	10.73	cfs
Flow Area	1.77	ft²
Wetted Perimeter	4.71	ft
Top Width	0.37e-7	ft
Critical Depth	1.26	ft
Percent Full	100.00	
Critical Slope	0.004814 ft/ft	
Velocity	6.07	ft/s
Velocity Head	0.57	ft
Specific Energy	2.07	ft
Froude Number	0.15e-3	
Maximum Discharge	11.54	cfs
Full Flow Capacity	10.73	cfs
Full Flow Slope	0.005000 ft/ft	
Flow is subcritical.		

APPENDIX F

Existing Hydrology Map Proposed Hydrology Map

