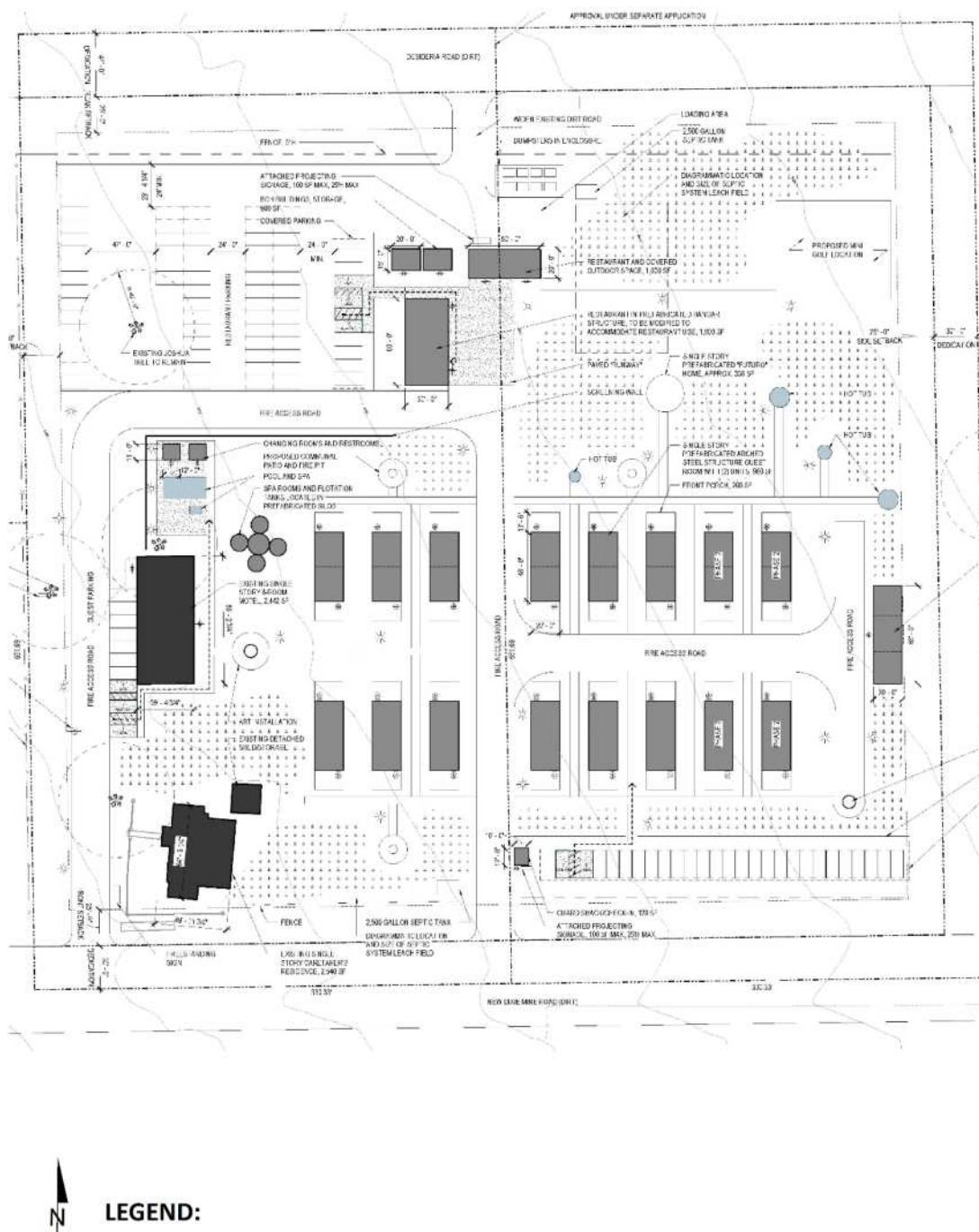


DATE: January 22, 2024
TO: David Martinez, Loescher Meachem Architects
FROM: Haseeb Qureshi, Ali Dadabhoy, Shannon Wong
JOB NO: 15672-02 AQ Assessment

LONELY DOVE MOTEL AIR QUALITY ASSESSMENT

David Martinez,

Urban Crossroads, Inc. is pleased to provide the following Air Quality Assessment for the Lonely Dove Motel (**Project**), which is located at 1473 Wamego Trail in unincorporated County of San Bernardino (APNs 0629-282-03 and 0629-282-06).


PROJECT OVERVIEW

It is our understanding that the Project is to consist of the expansion of an existing motel and addition of a restaurant and pool/spa complex within the Homestead Valley Community Plan in the Community of Landers. The expansion consists of the development of 32 new motel rooms and the addition of a 2,800 square foot restaurant, as shown in Exhibit 1. The proposed Project is anticipated to have an opening year of 2029.

SUMMARY OF FINDINGS

Results of the assessment indicate that the Project would result in a less than significant impact with respect to air quality and no mitigation is required.

EXHIBIT 1: PROJECT'S TENTATIVE TRACT MAP

PROJECT AIR QUALITY IMPACTS

AIR QUALITY SETTING

MOJAVE DESERT AIR BASIN (MDAB)

The Project site is located in the portion of the County of San Bernardino, California, that is part of the Mojave Desert Air Basin (MDAB) and is under the jurisdiction of the MDAQMD. The air quality assessment for the proposed Project includes estimating emissions associated with short-term construction and long-term operation of the proposed Project. A number of air quality modeling tools are available to assess the air quality impacts of projects. In addition, certain air districts, such as the MDAQMD, have created guidelines and requirements to conduct air quality analyses. The MDAQMD's current guidelines, included in its *California Environmental Quality Act and Federal Conformity Guidelines* (August 2011), were adhered to in the assessment of air quality impacts for the proposed Project.

Regional Climate

Air quality in the Project area is not only affected by various emissions sources (mobile, industry, etc.) but is also affected by atmospheric conditions such as wind speed, wind direction, temperature, and rainfall.

The MDAB is an assemblage of mountain ranges interspersed with long broad valleys that often contain dry lakes. Many of the lower mountains that dot the vast terrain rise from 1,000 to 4,000 ft above the valley floor. Prevailing winds in the MDAB are out of the west and southwest. These prevailing winds are due to the proximity of the MDAB to coastal and central regions and the blocking nature of the Sierra Nevada Mountains to the north; air masses pushed onshore in Southern California by differential heating are channeled through the MDAB. The MDAB is separated from the Southern California coastal and central California valley regions by mountains (highest elevation is approximately 10,000 ft), whose passes form the main channels for these air masses. The Mojave Desert is bordered on the southwest by the San Bernardino Mountains, separated from the San Gabriels by the Cajon Pass (4,200 ft). A lesser pass lies between the San Bernardino Mountains and the Little San Bernardino Mountains in the Morongo Valley. The Palo Verde Valley portion of the Mojave Desert lies in the low desert, at the eastern end of a series of valleys (notably the Coachella Valley), whose primary channel is the San Gorgonio Pass (2,300 ft) between the San Bernardino and San Jacinto Mountains.

During the summer, the MDAB is generally influenced by a Pacific subtropical high cell that sits off the coast, inhibiting cloud formation and encouraging daytime solar heating. The MDAB is rarely influenced by cold air masses moving south from Canada and Alaska, as these frontal systems are weak and diffuse by the time they reach the desert. Most desert moisture arrives from infrequent warm, moist, and unstable air masses from the south. The MDAB averages between three and seven inches of precipitation per year (from 16 to 30 days with at least 0.01 inch of precipitation). The MDAB is classified as a dry-hot desert climate, with portions classified as dry-very hot desert, to indicate that at least three months have maximum average temperatures over 100.4° F.

Snow is common above 5,000 ft in elevation, resulting in moderate snowpack and limited spring runoff. Below 5,000 ft, any precipitation normally occurs as rainfall. Pacific storm fronts normally move into the area from the west, driven by prevailing winds from the west and southwest. During late summer, moist high-pressure systems from the Pacific collide with rising heated air from desert areas, resulting in brief, high-intensity thunderstorms that can cause high winds and localized flash flooding.

Criteria Pollutants

Both the U.S. Environmental Protection Agency (EPA) and the California Air Resources Board (CARB) have established ambient air quality standards for common pollutants. These ambient air quality standards are levels of contaminants representing safe levels that avoid specific adverse health effects associated with each pollutant. The ambient air quality standards cover what are called "criteria" pollutants because the health and other effects of each pollutant are described in criteria documents. The six criteria pollutants are ozone (O_3) (precursor emissions include NO_x and reactive organic gases (ROG), CO, particulate matter (PM), nitrogen dioxide (NO_2), sulfur dioxide (SO_2), and lead. Areas that meet ambient air quality standards are classified as attainment areas, while areas that do not meet these standards are classified as nonattainment areas. The San Bernardino County portion of the MDAB is designated as a nonattainment area for the federal O_3 and $PM_{2.5}$ standards and is also a nonattainment area for the state standards for O_3 , and PM_{10} .

REGULATORY BACKGROUND

FEDERAL REGULATIONS

The EPA is responsible for setting and enforcing the national ambient air quality standards (NAAQS) for O_3 , CO, NO_x , SO_2 , PM_{10} , and lead (Pb) (5). The EPA has jurisdiction over emissions sources that are under the authority of the federal government including aircraft, locomotives, and emissions sources outside state waters (Outer Continental Shelf). The EPA also establishes emission standards for vehicles sold in states other than California. Automobiles sold in California must meet the stricter emission requirements of CARB.

The Federal Clean Air Act (CAA) was first enacted in 1955 and has been amended numerous times in subsequent years (1963, 1965, 1967, 1970, 1977, and 1990). The CAA establishes the federal air quality standards, the NAAQS, and specifies future dates for achieving compliance (6). The CAA also mandates that each state submit and implement state implementation plans (SIPs) for local areas not meeting these standards. These plans must include pollution control measures that demonstrate how the standards will be met.

The 1990 amendments to the CAA that identify specific emission reduction goals for areas not meeting the NAAQS require a demonstration of reasonable further progress toward attainment and incorporate additional sanctions for failure to attain or to meet interim milestones. The sections of the CAA most directly applicable to the development of the Project site include Title I (Non-Attainment Provisions) and Title II (Mobile Source Provisions) (7) (8). Title I provisions were established with the goal of attaining the NAAQS for the following criteria pollutants O_3 , NO_2 , SO_2 , PM_{10} , CO, $PM_{2.5}$, and Pb. The NAAQS were amended in July 1997 to include an additional standard for O_3 and to adopt a NAAQS for $PM_{2.5}$.

Mobile source emissions are regulated in accordance with Title II provisions. These provisions require the use of cleaner burning gasoline and other cleaner burning fuels such as methanol and natural gas. Automobile manufacturers are also required to reduce tailpipe emissions of hydrocarbons and NO_x. NO_x is a collective term that includes all forms of NO_x which are emitted as byproducts of the combustion process.

CALIFORNIA REGULATIONS

CARB

The CARB, which became part of the California EPA (CalEPA) in 1991, is responsible for ensuring implementation of the California Clean Air Act (AB 2595), responding to the federal CAA, and for regulating emissions from consumer products and motor vehicles. AB 2595 mandates achievement of the maximum degree of emissions reductions possible from vehicular and other mobile sources in order to attain the state ambient air quality standards by the earliest practical date. The CARB established the California ambient air quality standards (CAAQS) for all pollutants for which the federal government has NAAQS and, in addition, establishes standards for SO₄, visibility, hydrogen sulfide (H₂S), and vinyl chloride (C₂H₃Cl). However, at this time, H₂S and C₂H₃Cl are not measured at any monitoring stations in the MDAB because they are not considered to be a regional air quality problem. Generally, the CAAQS are more stringent than the NAAQS (1) (2).

Local air quality management districts, such as the MDAQMD, regulate air emissions from stationary sources such as commercial and industrial facilities. All air pollution control districts have been formally designated as attainment or non-attainment for each CAAQS.

Serious non-attainment areas are required to prepare Air Quality Management Plans (AQMP) that include specified emission reduction strategies in an effort to meet clean air goals. These plans are required to include:

- Application of Best Available Retrofit Control Technology to existing sources;
- Developing control programs for area sources (e.g., architectural coatings and solvents) and indirect sources (e.g. motor vehicle use generated by residential and commercial development);
- A District permitting system designed to allow no net increase in emissions from any new or modified permitted sources of emissions;
- Implementing reasonably available transportation control measures and assuring a substantial reduction in growth rate of vehicle trips and miles traveled;
- Significant use of low emissions vehicles by fleet operators;
- Sufficient control strategies to achieve a 5% or more annual reduction in emissions or 15% or more in a period of three years for ROGs, NO_x, CO and PM₁₀. However, air basins may use alternative emission reduction strategy that achieves a reduction of less than 5% per year under certain circumstances.

AQMP

Currently, the NAAQS and CAAQS are exceeded in most parts of the MDAB. In regard to the NAAQS, the Project region within the MDAB is in nonattainment for ozone (8-hour) and PM₁₀. For the CAAQS, the Project region within the MDAB is in nonattainment for ozone (1-hour and 8-hour), PM₁₀, and PM_{2.5}. In response, the MDAQMD has adopted a series of Air Quality Management Plans (AQMPs) to meet the state and federal ambient air quality standards (3). AQMPs are updated regularly in order to more effectively reduce emissions, accommodate growth, and to minimize any negative fiscal impacts of air pollution control on the economy.

APPLICABLE REGULATORY REQUIREMENTS

MDAQMD Rules that are currently applicable during construction activity for this Project include but are not limited to Rule 403 (Fugitive Dust) and Rule 1113 (Architectural Coatings) (4) (5).

MDAQMD Rule 403

This rule is intended to reduce the amount of particulate matter entrained in the ambient air as a result of anthropogenic (human-made) fugitive dust sources by requiring actions to prevent and reduce fugitive dust emissions. Rule 403 applies to any activity or human-made condition capable of generating fugitive dust and requires best available control measures to be applied to earth moving and grading activities. This rule is intended to reduce PM₁₀ emissions from any transportation, handling, construction, or storage activity that has the potential to generate fugitive dust. PM₁₀ suppression techniques are summarized below.

- Portions of a construction site to remain inactive longer than a period of three months will be seeded and watered until grass cover is grown or otherwise stabilized.
- All onsite roads will be paved as soon as feasible or watered periodically or chemically stabilized.
- All material transported offsite will be either sufficiently watered or securely covered to prevent excessive amounts of dust.
- The area disturbed by clearing, grading, earthmoving, or excavation operations will be minimized at all times.
- Where vehicles leave a construction site and enter adjacent public streets, the streets will be swept daily or washed down at the end of the workday to remove soil tracked onto the paved surface.

MDAQMD Rule 1113

This rule serves to limit the volatile organic compound (VOC) content of architectural coatings used on projects in the MDAQMD. Any person who supplies, sells, offers for sale, or manufactures any architectural coating for use on projects in the MDAQMD must comply with the current VOC standards set in this rule.

METHODOLOGY

In May 2023, the California Air Pollution Control Officers Association (CAPCOA) in conjunction with other California air districts, including MDAQMD, released the latest version of the CalEEMod

Version 2022.1.1.21. The purpose of this model is to calculate construction-source and operational-source criteria pollutant (VOCs, NO_x, SO_x, CO, PM₁₀, and PM_{2.5}) and GHG emissions from direct and indirect sources; and quantify applicable air quality and GHG reductions achieved from mitigation measures (6). Accordingly, the latest version of CalEEMod has been used for this Project to determine construction and operational air quality and greenhouse gas emissions.

Standards of Significance

The criteria used to determine the significance of potential Project-related air quality impacts are taken from the California Environmental Quality Act Guidelines (CEQA Guidelines) (14 CCR §§15000, et seq.). Based on these thresholds, a project would result in a significant impact related to air quality if it would (7):

- **Threshold 1:** Conflict with or obstruct implementation of the applicable air quality plan.
- **Threshold 2:** Result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in non-attainment under an applicable federal or state ambient air quality standard.
- **Threshold 3:** Expose sensitive receptors to substantial pollutant concentrations.
- **Threshold 4:** Result in other emissions (such as those leading to odors) adversely affecting a substantial number of people.

AIR QUALITY REGIONAL EMISSIONS THRESHOLDS

The MDAQMD has developed regional significance thresholds for criteria pollutants, as summarized at Table 1 (8). The MDAQMD's CEQA Air Quality Significance Thresholds (April 2019) indicate that any projects in the Mojave Desert Air Basin (MDAB) with daily emissions that exceed any of the indicated thresholds should be considered as having an individually and cumulatively significant air quality impact.

TABLE 1: MAXIMUM DAILY REGIONAL EMISSIONS THRESHOLDS

Pollutant	Construction/Operations
CO	548 lbs/day
NO _x	137 lbs/day
VOC	137 lbs/day
SO _x	137 lbs/day
PM ₁₀	82 lbs/day
PM _{2.5}	65 lbs/day

lbs/day – Pounds Per Day

CONSTRUCTION ACTIVITIES

Construction activities associated with the Project would result in emissions of VOCs, NO_x, SO_x, CO, PM₁₀, and PM_{2.5}. Construction related emissions are expected from the following construction activities:

- Site Preparation
- Grading
- Building Construction
- Paving
- Architectural Coating

GRADING ACTIVITIES

Dust is typically a major concern during grading activities. Because such emissions are not amenable to collection and discharge through a controlled source, they are called "fugitive emissions". Fugitive dust emissions rates vary as a function of many parameters (soil silt, soil moisture, wind speed, area disturbed, number of vehicles, depth of disturbance or excavation, etc.). CalEEMod was utilized to calculate fugitive dust emissions resulting from this phase of activity. Project grading activity is expected to balance, and no import/export is anticipated.

ON-ROAD TRIPS

Construction generates on-road vehicle emissions from vehicle usage for workers, vendors, and haul trucks commuting to and from the site. Worker and hauling trips are based on CalEEMod defaults. It should be noted that for vendor trips, specifically, CalEEMod only assigns vendor trips to the Building Construction phase. Vendor trips would likely occur during all phases of construction. As such, the CalEEMod defaults for vendor trips have been adjusted based on a ratio of the total vendor trips to the number of days of each subphase of activity.

OFF-SITE CONSTRUCTION

To support the Project development, there will be off-site improvements which includes utility, infrastructure and roadway improvements. It is expected that the off-site construction activities would not take place at one location for the entire duration of construction. Impacts associated with these activities are not expected to exceed the emissions identified for Project-related construction activities since the off-site construction areas would have physical constraints on the amount of daily activity that could occur relative to the size and scope of the on-site activity. The physical constraints of off-site work (e.g., roadways and right-of-way) would limit the amount of construction equipment that could be used, and any off-site and utility infrastructure construction would not use equipment totals or disturb more area than what would occur for site development. As such, no impacts beyond what has already been identified in this report are expected to occur.

CONSTRUCTION DURATION

For purposes of analysis, construction of Project is expected to commence in January 2025 and would last through December 2029. The construction schedule utilized in the analysis represents a “worst-case” analysis scenario should construction occur any time after the respective dates since emission factors for construction decrease as time passes and the analysis year increases due to emission regulations becoming more stringent¹. The duration of construction activity and associated equipment represents a reasonable approximation of the expected construction fleet as required per CEQA Guidelines (9).

REGIONAL CONSTRUCTION EMISSIONS SUMMARY

The estimated maximum daily construction emissions without mitigation are summarized on Table 2. Detailed construction model outputs are presented in Attachment A. Under the assumed scenarios, emissions resulting from the Project construction will not exceed thresholds established by the MDAQMD for emissions of any criteria pollutant and no mitigation is required.

TABLE 2 OVERALL REGIONAL CONSTRUCTION EMISSIONS SUMMARY

Source	Emissions (lbs/day)					
	VOC	NO _x	CO	SO _x	PM ₁₀	PM _{2.5}
Summer						
2025	3.68	32.72	31.11	0.06	4.46	2.44
2026	1.26	10.98	15.75	0.03	0.74	0.46
2027	1.21	10.47	15.60	0.03	0.70	0.42
2028	1.17	9.94	15.49	0.03	0.66	0.38
2029	6.69	17.13	27.94	0.04	1.14	0.65
Winter						
2025	4.13	37.56	33.41	0.06	7.82	4.52
2026	1.25	11.00	15.22	0.03	0.74	0.46
2027	1.20	10.49	15.12	0.03	0.70	0.42
2028	1.16	9.96	15.04	0.03	0.66	0.38
2029	6.65	17.15	27.13	0.04	1.14	0.65
Maximum Daily Emissions	6.69	37.56	33.41	0.06	7.82	4.52
MDAQMD Regional Threshold	137	137	548	137	82	65
Threshold Exceeded?	NO	NO	NO	NO	NO	NO

¹PM₁₀ and PM_{2.5} source emissions reflect 3x daily watering per MDAQMD Rule 403 for fugitive dust.

¹ As shown in the CalEEMod User’s Guide Version 2022.1.1.12, Section 4.3 “Off-Road Equipment” as the analysis year increases, emission factors for the same equipment pieces decrease due to the natural turnover of older equipment being replaced by newer less polluting equipment and new regulatory requirements.

REGIONAL OPERATIONAL EMISSIONS

Operational activities associated with the Project would result in emissions of CO, VOCs, NO_x, SO_x, PM₁₀, and PM_{2.5}. Operational related emissions are expected from the following primary sources: area source emissions, energy source emissions, and mobile source emissions.

The Project related operational air quality impacts derive primarily from vehicle trips generated by the Project. Trip characteristics available from the *Lonely Dove Motel Vehicles Miles Traveled (VMT) Evaluation* were utilized in this analysis (10).

The estimated operation-source emissions from the Project are summarized on Table 3. Detailed operation model outputs are presented in Attachment A. As shown on Table 3, operational-source emissions would not exceed the applicable MDAQMD regional thresholds for emissions of any criteria pollutant and no mitigation is required.

TABLE 3: TOTAL PROJECT REGIONAL OPERATIONAL EMISSIONS

Source	Emissions (lbs/day)					
	VOC	NO _x	CO	SO _x	PM ₁₀	PM _{2.5}
Summer						
Mobile Source	1.41	1.78	17.94	0.05	4.43	1.15
Area Source	1.53	0.02	2.14	0.00	0.00	0.00
Energy Source	0.03	0.46	0.39	0.00	0.03	0.03
Total Maximum Daily Emissions	2.96	2.26	20.46	0.05	4.46	1.18
MDAQMD Regional Threshold	137	137	548	137	82	65
Threshold Exceeded?	NO	NO	NO	NO	NO	NO
Winter						
Mobile Source	1.27	1.93	13.39	0.04	4.43	1.15
Area Source	1.18	0.00	0.00	0.00	0.00	0.00
Energy Source	0.03	0.46	0.39	0.00	0.03	0.03
Total Maximum Daily Emissions	2.48	2.39	13.77	0.05	4.46	1.18
MDAQMD Regional Threshold	137	137	548	137	82	65
Threshold Exceeded?	NO	NO	NO	NO	NO	NO

AIR QUALITY IMPACTS – CONSISTENCY WITH THRESHOLD NO. 1

Would the Project conflict with or obstruct implementation of the applicable air quality plan?

The Federal Particulate Matter Attainment Plan and Ozone Attainment Plan for the Mojave Desert set forth a comprehensive set of programs that will lead the MDAB into compliance with federal and state air quality standards. The control measures and related emission reduction estimates within the Federal Particulate Matter Attainment Plan and Ozone Attainment Plan are based upon emissions projections for a future development scenario derived from land use, population, and employment characteristics defined in consultation with local governments. Accordingly,

conformance with these attainment plans for development projects is determined by demonstrating compliance the indicators discussed below:

Consistency Criterion No. 1

According to the Homestead Valley Community Plan within the County of San Bernardino, the Project site is designated as "Special Development-Commercial (HV/SD-COM)."

The "HV/SD-COM" designation provides sites for a combination of residential, commercial, industrial, agricultural, open space and recreation uses, and other similar use (10). The project spans two contiguous parcels, APNs 0629-282-03 and 0629-282-06; this application includes the Policy Plan Amendment and Zone Change for APN 0629-282-06. The parcels will be tied with a separate lot merger application.

The Project would consist of the expansion of 32 new motel rooms with the addition of a 2,800 square foot restaurant to the existing motel, which is consistent with the County of San Bernardino Homestead Valley Community Plan land use designation (11). The Project's proposed uses are consistent with the site's land use designations, and a general plan amendment will not be required.

The Project will require the following discretionary approvals from the City: a Policy Plan Amendment and Zone Change for APN 0629-282-06. However, the proposed Project regional emissions are well below the thresholds established by the MDAQMD and on the basis of the preceding discussion, the Project is determined to be consistent with the second criterion.

As the proposed Project is consistent with site's land use designation, would not exceed any applicable regional thresholds, and would not result in or cause NAAQS or CAAQS violations, the Project is therefore considered to be consistent with the AQMP and a less than significant impact is expected.

Consistency Criterion No. 2

All MDAQMD Rules and Regulations

The Project would be required to comply with all applicable MDAQMD Rules and Regulations, including, but not limited to Rules 401 (Visible Emissions), 402 (Nuisance), and 403 (Fugitive Dust).

Consistency Criterion No. 3

Demonstrating that the project will not increase the frequency or severity of a violation in the federal or state ambient air quality standards

Consistency Criterion No. 3 refers to violations of the CAAQS and NAAQS. CAAQS and NAAQS violations would occur if regional significance thresholds were exceeded. As evaluated, the Project's regional construction and operational emissions would not exceed applicable regional significance thresholds. As such, a less than significant impact is expected

AQMP Consistency Conclusion

The Project would not have the potential to result in or cause NAAQS or CAAQS violations. Additionally, Project construction and operational-source emissions would not exceed the regional or localized significance thresholds. Further, the Project will not exceed the assumptions in the AQMP based on the years of Project build-out phase.

The Project is therefore considered to be consistent with the AQMP.

AIR QUALITY IMPACTS – CONSISTENCY WITH THRESHOLD NO. 2

Would the Project result in a cumulatively considerable net increase of any criteria pollutant for which the project region is in non-attainment under an applicable federal or state ambient air quality standard?

The MDAQMD relies on the SCAQMD guidance for determining cumulative impacts. The SCAQMD has recognized that there is typically insufficient information to quantitatively evaluate the cumulative contributions of multiple projects because each project applicant has no control over nearby projects.

The SCAQMD has published a report on how to address cumulative impacts from air pollution: White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution (12). In this report the SCAQMD clearly states (Page D-3):

“...the SCAQMD uses the same significance thresholds for project specific and cumulative impacts for all environmental topics analyzed in an Environmental Assessment or EIR. The only case where the significance thresholds for project specific and cumulative impacts differ is the Hazard Index (HI) significance threshold for TAC emissions. The project specific (project increment) significance threshold is HI > 1.0 while the cumulative (facility-wide) is HI > 3.0. It should be noted that the HI is only one of three TAC emission significance thresholds considered (when applicable) in a CEQA analysis. The other two are the maximum individual cancer risk (MICR) and the cancer burden, both of which use the same significance thresholds (MICR of 10 in 1 million and cancer burden of 0.5) for project specific and cumulative impacts.

Projects that exceed the project-specific significance thresholds are considered by the SCAQMD to be cumulatively considerable. This is the reason project-specific and cumulative significance thresholds are the same. Conversely, projects that do not exceed the project-specific thresholds are generally not considered to be cumulatively significant.”

Therefore, this analysis assumes that individual projects that do not generate operational or construction emissions that exceed the SCAQMD's recommended daily thresholds for project-specific impacts would also not cause a cumulatively considerable increase in emissions for those pollutants for which MDAB is in nonattainment, and, therefore, would not be considered to have a significant, adverse air quality impact. Alternatively, individual project-related construction and operational emissions that exceed SCAQMD thresholds for project-specific impacts would be considered cumulatively considerable.

Construction Impacts

The Project-specific evaluation of emissions presented in the preceding analysis demonstrates that proposed Project construction-source air pollutant emissions would not result in exceedances of regional thresholds. Therefore, the proposed Project construction-source emissions would be considered less than significant on a project-specific and cumulative basis.

Operational Impacts

The Project-specific evaluation of emissions presented in the preceding analysis demonstrates that proposed Project operational-source air pollutant emissions would not result in exceedances

of regional thresholds. Therefore, the proposed Project operational-source emissions would be considered less than significant on a project-specific and cumulative basis.

AIR QUALITY IMPACTS – CONSISTENCY WITH THRESHOLD NO. 3

Would the expose sensitive receptors to substantial pollutant concentrations?

The potential impact of Project-generated air pollutant emissions at sensitive receptors has also been considered. Sensitive receptors can include uses such as long-term health care facilities, rehabilitation centers, and retirement homes. Residences, schools, playgrounds, childcare centers, and athletic facilities can also be considered as sensitive receptors. The nearest sensitive receptor is the existing residence approximately 100 feet east of the Project site.

As per the MDAQMD Guidelines, the following project types located within a specified distance to an existing or planned sensitive receptor land use must be evaluated to determine exposure of substantial pollutant concentrations to sensitive receptors (18):

- Any industrial project within 1,000 feet;
- A distribution center (40 or more trucks per day) within 1,000 feet;
- A major transportation project (50,000 or more vehicles per day) within 1,000 feet;
- A dry cleaner using perchloroethylene within 500 feet;
- A gasoline dispensing facility within 300 feet.

The proposed Project consists of an 80-room hotel operating 24 hours a day with food and beverage services. As such, no analysis for sensitive receptors is required. Additionally, results of the regional analysis indicate that the Project will not exceed the MDAQMD significance thresholds during construction or operations. Therefore, sensitive receptors would not be subject to a significant air quality impact during Project construction and operational activities.

CO "HOT SPOT" ANALYSIS

It should be noted that MDAQMD has not established its own guidelines for CO hotspots analysis. Since the MDAQMD guidelines are based on SCAQMD methodology, it is appropriate to apply the SCAQMD criteria when analyzing CO hotspots within the MDAQMD.

As discussed below, the Project would not result in potentially adverse CO concentrations or "hot spots." An adverse CO concentration, known as a "hot spot", would occur if an exceedance of the state one-hour standard of 20 ppm or the eight-hour standard of 9 ppm were to occur.

It has long been recognized that CO hotspots are caused by vehicular emissions, primarily when idling at congested intersections. In response, vehicle emissions standards have become increasingly stringent in the last twenty years. Currently, the allowable CO emissions standard in California is a maximum of 3.4 grams/mile for passenger cars (there are requirements for certain vehicles that are more stringent). With the turnover of older vehicles, introduction of cleaner fuels, and implementation of increasingly sophisticated and efficient emissions control technologies, CO concentration in the MDAB is now designated as attainment.

To establish a more accurate record of baseline CO concentrations affecting the MDAB, a CO "hot spot" analysis was conducted in 2003 for four busy intersections in Los Angeles at the peak

morning and afternoon time periods². This “hot spot” analysis did not predict any exceedance of the 1-hour (20.0 ppm) or 8-hour (9.0 ppm) CO standards, as shown on Table 4.

TABLE 4: CO MODEL RESULTS

Intersection Location	CO Concentrations (ppm)		
	Morning 1-hour	Afternoon 1-hour	8-hour
Wilshire Boulevard/Veteran Avenue	4.6	3.5	3.7
Sunset Boulevard/Highland Avenue	4	4.5	3.5
La Cienega Boulevard/Century Boulevard	3.7	3.1	5.2
Long Beach Boulevard/Imperial Highway	3	3.1	8.4

Notes: Federal 1-hour standard is 35 ppm and the deferral 8-hour standard is 9.0 ppm.

As identified within SCAQMD's 2003 AQMP and the 1992 Federal Attainment Plan for Carbon Monoxide (1992 CO Plan), peak CO concentrations in the MDAB were a result of unusual meteorological and topographical conditions and not a result of traffic volumes and congestion at a particular intersection. As evidence of this, for example, 9.3 ppm 8-hour CO concentration measured at the Long Beach Boulevard and Imperial Highway intersection (highest CO generating intersection within the “hot spot” analysis), only 0.7 ppm was attributable to the traffic volumes and congestion at this intersection; the remaining 8.6 ppm were due to the ambient air measurements at the time the 2003 AQMP was prepared (22).

Similar considerations are also employed by other Air Districts when evaluating potential CO concentration impacts. More specifically, the Bay Area Air Quality Management District (BAAQMD) concludes that under existing and future vehicle emission rates, a given project would have to increase traffic volumes at a single intersection by more than 44,000 vehicles per hour (vph)—or 24,000 vph where vertical and/or horizontal air does not mix—in order to generate a significant CO impact (13). Traffic volumes generating the CO concentrations for the “hot spot” analysis is shown on Table 5. The busiest intersection evaluated was that at Wilshire Boulevard and Veteran Avenue, which had AM/PM traffic volumes of 8,062 vph and 7,719 vph respectively (14).

The proposed Project considered herein would generate 107 trips and would not produce the volume of traffic required to generate a CO “hot spot” either in the context of the 2003 Los Angeles hot spot study or based on representative BAAQMD CO threshold considerations. Therefore, CO “hot spots” are not an environmental impact of concern for the proposed Project. Localized air quality impacts related to mobile-source emissions would therefore be less than significant.

² The CO “hot spot” analysis conducted in 2003 is the most current study used for CO “hot spot” analysis in the SCAB.

TABLE 5: CO MODEL RESULTS

Intersection Location	Peak Traffic Volumes (vph)				
	Eastbound (AM/PM)	Westbound (AM/PM)	Southbound (AM/PM)	Northbound (AM/PM)	Total (AM/PM)
Wilshire Boulevard/Veteran Avenue	4,954/2,069	1,830/3,317	721/1,400	560/933	8,062/7,719
Sunset Boulevard/Highland Avenue	1,417/1,764	1,342/1,540	2,304/1,832	1,551/2,238	6,614/5,374
La Cienega Boulevard/Century Boulevard	2,540/2,243	1,890/2,728	1,384/2,029	821/1,674	6,634/8,674
Long Beach Boulevard/Imperial Highway	1,217/2,020	1,760/1,400	479/944	756/1,150	4,212/5,514

AIR QUALITY IMPACTS – CONSISTENCY WITH THRESHOLD NO. 4

Would the Project result in other emissions (such as those leading to odors) adversely affecting a substantial number of people?

The potential for the Project to generate objectionable odors has also been considered. Land uses generally associated with odor complaints include:

- Agricultural uses (livestock and farming)
- Wastewater treatment plants
- Food processing plants
- Chemical plants
- Composting operations
- Refineries
- Landfills
- Dairies
- Fiberglass molding facilities

The Project does not contain land uses typically associated with emitting objectionable odors. Potential odor sources associated with the proposed Project may result from construction equipment exhaust and the application of asphalt and architectural coatings during construction activities and the temporary storage of typical solid waste (refuse) associated with the proposed Project's (long-term operational) uses. Standard construction requirements would minimize odor impacts from construction. The construction odor emissions would be temporary, short-term, and intermittent in nature and would cease upon completion of the respective phase of construction and is thus considered less than significant. It is expected that Project-generated refuse would be stored in covered containers and removed at regular intervals in compliance with the solid waste regulations. The proposed Project would also be required to comply with MDAQMD Rule 402 to prevent occurrences of public nuisances. Therefore, odors associated with the proposed Project construction and operations would be less than significant and no mitigation is required (15).

AIR QUALITY CONCLUSION

Results of the assessment indicate that the Project is not anticipated to result in a significant impact during construction or operational activities associated with air quality and no mitigation is required.

REFERENCES

1. **Air Resources Board.** California Ambient Air Quality Standards (CAAQS). [Online] 2009. [Cited: April 16, 2018.] <http://www.arb.ca.gov/research/aaqs/caaqs/caaqs.htm>.
2. **Environmental Protection Agency.** National Ambient Air Quality Standards (NAAQS). [Online] 1990. <https://www.epa.gov/environmental-topics/air-topics>.
3. **California Air Resources Board.** Western Mojave Desert Air Quality Management Plans. [Online] <https://www.arb.ca.gov/planning/sip/planarea/mojavesedsip.htm>.
4. **Mojave Desert Air Quality Management District.** Rule 403 Fugitive Dust Control for the Mojave Desert Planning Area. [Online] <https://www.mdaqmd.ca.gov/home/showpublisheddocument/8482/637393282546170000>.
5. —. Rule 1113 Architectural Coatings. [Online] <http://mdaqmd.ca.gov/home/showdocument?id=418>.
6. **California Air Pollution Control Officers Association (CAPCOA).** California Emissions Estimator Model (CalEEMod). [Online] May 2023. www.caleemod.com.
7. **State of California.** 2020 CEQA California Environmental Quality Act. 2020.
8. **Mojave Desert Air Quality Management District.** California Environmental Quality Act (CEQA) and Federal Conformity Guidelines. [Online] August 2016. <http://mdaqmd.ca.gov/home/showdocument?id=538>.
9. **State of California.** 2020 CEQA California Environmental Quality Act. 2020.
10. **Urban Crossroads, Inc.** *Lonely Dove Motel Vehicles Miles Traveled (VMT) Evaluation*. 2023.
11. **County of San Bernardino General Plan.** Homestead Valley Community Plan. [Online] 2007. <https://www.sbcounty.gov/uploads/lus/communityplans/homesteadvalleycp.pdf>.
12. **Goss, Tracy A and Kroeger, Amy.** White Paper on Potential Control Strategies to Address Cumulative Impacts from Air Pollution. [Online] South Coast Air Quality Management District, 2003. http://www.aqmd.gov/rules/ciwg/final_white_paper.pdf.
13. **Bay Area Air Quality Management District.** [Online] <http://www.baaqmd.gov/>.
14. **South Coast Air Quality Management District.** 2003 Air Quality Management Plan. [Online] 2003. <https://www.aqmd.gov/home/air-quality/clean-air-plans/air-quality-mgt-plan/2003-aqmp>.
15. **Mojave Desert Air Quality Management District.** RULE 402 NUISANCE. [Online] <https://www.mdaqmd.ca.gov/home/showpublisheddocument/290/636305704801500000>.

ATTACHMENT A
CALEEMOD EMISSIONS MODEL OUTPUTS

15672 - Lonely Dove Motel Detailed Report

Table of Contents

1. Basic Project Information

1.1. Basic Project Information

1.2. Land Use Types

1.3. User-Selected Emission Reduction Measures by Emissions Sector

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

2.2. Construction Emissions by Year, Unmitigated

2.4. Operations Emissions Compared Against Thresholds

2.5. Operations Emissions by Sector, Unmitigated

3. Construction Emissions Details

3.1. Site Preparation (2025) - Unmitigated

3.3. Grading (2025) - Unmitigated

3.5. Building Construction (2025) - Unmitigated

3.7. Building Construction (2026) - Unmitigated

3.9. Building Construction (2027) - Unmitigated

3.11. Building Construction (2028) - Unmitigated

3.13. Building Construction (2029) - Unmitigated

3.15. Paving (2029) - Unmitigated

3.17. Architectural Coating (2029) - Unmitigated

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

4.3. Area Emissions by Source

4.3.1. Unmitigated

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

5. Activity Data

5.1. Construction Schedule

5.2. Off-Road Equipment

5.2.1. Unmitigated

5.3. Construction Vehicles

5.3.1. Unmitigated

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

5.5. Architectural Coatings

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

5.6.2. Construction Earthmoving Control Strategies

5.7. Construction Paving

5.8. Construction Electricity Consumption and Emissions Factors

5.9. Operational Mobile Sources

5.9.1. Unmitigated

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

5.10.3. Landscape Equipment

5.11. Operational Energy Consumption

5.11.1. Unmitigated

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

5.13. Operational Waste Generation

5.13.1. Unmitigated

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

5.16.2. Process Boilers

5.17. User Defined

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

5.18.2. Sequestration

5.18.2.1. Unmitigated

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

6.2. Initial Climate Risk Scores

6.3. Adjusted Climate Risk Scores

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

7.2. Healthy Places Index Scores

7.3. Overall Health & Equity Scores

7.4. Health & Equity Measures

7.5. Evaluation Scorecard

7.6. Health & Equity Custom Measures

8. User Changes to Default Data

1. Basic Project Information

1.1. Basic Project Information

Data Field	Value
Project Name	15672 - Lonely Dove Motel
Construction Start Date	1/2/2025
Operational Year	2029
Lead Agency	—
Land Use Scale	Project/site
Analysis Level for Defaults	County
Windspeed (m/s)	3.60
Precipitation (days)	14.4
Location	1473 Wamego Trail, Landers, CA 92285, USA
County	San Bernardino-Mojave Desert
City	Unincorporated
Air District	Mojave Desert AQMD
Air Basin	Mojave Desert
TAZ	5143
EDFZ	10
Electric Utility	Southern California Edison
Gas Utility	Southern California Gas
App Version	2022.1.1.21

1.2. Land Use Types

Land Use Subtype	Size	Unit	Lot Acreage	Building Area (sq ft)	Landscape Area (sq ft)	Special Landscape Area (sq ft)	Population	Description

Hotel	32.0	Room	1.07	46,464	52,000	—	—	—
High Turnover (Sit Down Restaurant)	2.80	1000sqft	0.06	2,800	0.00	—	—	—
Parking Lot	118	Space	1.06	0.00	0.00	—	—	—
Other Asphalt Surfaces	7.81	Acre	7.81	0.00	0.00	—	—	—

1.3. User-Selected Emission Reduction Measures by Emissions Sector

No measures selected

2. Emissions Summary

2.1. Construction Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Unmit.	4.37	6.69	32.7	31.1	0.06	1.52	2.94	4.46	1.40	1.04	2.44	—	7,039	7,039	0.28	0.08	1.79	7,068
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Unmit.	4.91	6.65	37.6	33.4	0.06	1.93	5.89	7.82	1.78	2.74	4.52	—	7,005	7,005	0.29	0.08	0.05	7,033
Average Daily (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Unmit.	2.34	1.97	17.6	17.7	0.03	0.82	1.63	2.45	0.75	0.64	1.39	—	3,722	3,722	0.15	0.05	0.48	3,739
Annual (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Unmit.	0.43	0.36	3.22	3.23	0.01	0.15	0.30	0.45	0.14	0.12	0.25	—	616	616	0.02	0.01	0.08	619

2.2. Construction Emissions by Year, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Year	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily - Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
2025	4.37	3.68	32.7	31.1	0.06	1.52	2.94	4.46	1.40	1.04	2.44	—	7,039	7,039	0.28	0.07	1.71	7,068
2026	1.50	1.26	11.0	15.8	0.03	0.41	0.33	0.74	0.38	0.08	0.46	—	3,144	3,144	0.12	0.06	1.55	3,167
2027	1.44	1.21	10.5	15.6	0.03	0.37	0.33	0.70	0.34	0.08	0.42	—	3,134	3,134	0.11	0.06	1.40	3,156
2028	1.39	1.17	9.94	15.5	0.03	0.33	0.33	0.66	0.30	0.08	0.38	—	3,124	3,124	0.11	0.06	1.25	3,145
2029	2.39	6.69	17.1	27.9	0.04	0.56	0.58	1.14	0.51	0.14	0.65	—	5,060	5,060	0.18	0.08	1.79	5,090
Daily - Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
2025	4.91	4.13	37.6	33.4	0.06	1.93	5.89	7.82	1.78	2.74	4.52	—	7,005	7,005	0.29	0.07	0.04	7,033
2026	1.49	1.25	11.0	15.2	0.03	0.41	0.33	0.74	0.38	0.08	0.46	—	3,111	3,111	0.11	0.06	0.04	3,132
2027	1.43	1.20	10.5	15.1	0.03	0.37	0.33	0.70	0.34	0.08	0.42	—	3,101	3,101	0.11	0.06	0.04	3,122
2028	1.37	1.16	9.96	15.0	0.03	0.33	0.33	0.66	0.30	0.08	0.38	—	3,091	3,091	0.11	0.06	0.03	3,112
2029	2.37	6.65	17.1	27.1	0.04	0.56	0.58	1.14	0.51	0.14	0.65	—	4,998	4,998	0.18	0.08	0.05	5,027
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
2025	2.34	1.97	17.6	17.7	0.03	0.82	1.63	2.45	0.75	0.64	1.39	—	3,722	3,722	0.15	0.05	0.41	3,739
2026	1.06	0.89	7.86	11.0	0.02	0.29	0.23	0.53	0.27	0.06	0.33	—	2,227	2,227	0.08	0.04	0.48	2,243
2027	1.02	0.86	7.50	10.9	0.02	0.26	0.23	0.50	0.24	0.06	0.30	—	2,221	2,221	0.08	0.04	0.43	2,236
2028	0.98	0.83	7.14	10.8	0.02	0.24	0.23	0.47	0.22	0.06	0.27	—	2,219	2,219	0.08	0.04	0.39	2,234
2029	1.17	1.97	8.44	13.3	0.02	0.27	0.29	0.56	0.25	0.07	0.32	—	2,611	2,611	0.09	0.05	0.40	2,628
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
2025	0.43	0.36	3.22	3.23	0.01	0.15	0.30	0.45	0.14	0.12	0.25	—	616	616	0.02	0.01	0.07	619
2026	0.19	0.16	1.44	2.00	< 0.005	0.05	0.04	0.10	0.05	0.01	0.06	—	369	369	0.01	0.01	0.08	371

2027	0.19	0.16	1.37	1.99	< 0.005	0.05	0.04	0.09	0.04	0.01	0.05	—	368	368	0.01	0.01	0.07	370
2028	0.18	0.15	1.30	1.98	< 0.005	0.04	0.04	0.09	0.04	0.01	0.05	—	367	367	0.01	0.01	0.06	370
2029	0.21	0.36	1.54	2.43	< 0.005	0.05	0.05	0.10	0.05	0.01	0.06	—	432	432	0.02	0.01	0.07	435

2.4. Operations Emissions Compared Against Thresholds

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Un/Mit.	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Unmit.	1.99	2.96	2.26	20.5	0.05	0.07	4.39	4.46	0.07	1.11	1.18	31.0	6,349	6,380	3.36	0.21	40.5	6,566
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Unmit.	1.47	2.48	2.39	13.8	0.05	0.07	4.39	4.46	0.07	1.11	1.18	31.0	5,902	5,933	3.37	0.21	28.0	6,108
Average Daily (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Unmit.	0.98	2.04	1.48	8.93	0.03	0.05	2.24	2.29	0.05	0.57	0.62	31.0	3,769	3,800	3.31	0.12	30.5	3,949
Annual (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Unmit.	0.18	0.37	0.27	1.63	< 0.005	0.01	0.41	0.42	0.01	0.10	0.11	5.14	624	629	0.55	0.02	5.05	654

2.5. Operations Emissions by Sector, Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Sector	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Mobile	1.56	1.41	1.78	17.9	0.05	0.03	4.39	4.43	0.03	1.11	1.15	—	4,943	4,943	0.12	0.19	12.9	5,014

Area	0.38	1.53	0.02	2.14	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	8.81	8.81	< 0.005	< 0.005	—	8.84	
Energy	0.05	0.03	0.46	0.39	< 0.005	0.03	—	0.03	0.03	—	0.03	—	1,382	1,382	0.13	0.01	—	1,389	
Water	—	—	—	—	—	—	—	—	—	—	—	—	3.62	15.0	18.6	0.37	0.01	—	30.6
Waste	—	—	—	—	—	—	—	—	—	—	—	—	27.4	0.00	27.4	2.74	0.00	—	95.9
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	27.6	27.6
Total	1.99	2.96	2.26	20.5	0.05	0.07	4.39	4.46	0.07	1.11	1.18	31.0	6,349	6,380	3.36	0.21	40.5	6,566	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Mobile	1.42	1.27	1.93	13.4	0.04	0.03	4.39	4.43	0.03	1.11	1.15	—	4,504	4,504	0.13	0.19	0.33	4,565	
Area	—	1.18	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Energy	0.05	0.03	0.46	0.39	< 0.005	0.03	—	0.03	0.03	—	0.03	—	1,382	1,382	0.13	0.01	—	1,389	
Water	—	—	—	—	—	—	—	—	—	—	—	—	3.62	15.0	18.6	0.37	0.01	—	30.6
Waste	—	—	—	—	—	—	—	—	—	—	—	—	27.4	0.00	27.4	2.74	0.00	—	95.9
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	27.6	27.6
Total	1.47	2.48	2.39	13.8	0.05	0.07	4.39	4.46	0.07	1.11	1.18	31.0	5,902	5,933	3.37	0.21	28.0	6,108	
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Mobile	0.74	0.66	1.02	7.48	0.02	0.02	2.24	2.25	0.02	0.57	0.58	—	2,367	2,367	0.07	0.10	2.86	2,402	
Area	0.19	1.35	0.01	1.06	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	4.35	4.35	< 0.005	< 0.005	—	4.36	
Energy	0.05	0.03	0.46	0.39	< 0.005	0.03	—	0.03	0.03	—	0.03	—	1,382	1,382	0.13	0.01	—	1,389	
Water	—	—	—	—	—	—	—	—	—	—	—	—	3.62	15.0	18.6	0.37	0.01	—	30.6
Waste	—	—	—	—	—	—	—	—	—	—	—	—	27.4	0.00	27.4	2.74	0.00	—	95.9
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	27.6	27.6
Total	0.98	2.04	1.48	8.93	0.03	0.05	2.24	2.29	0.05	0.57	0.62	31.0	3,769	3,800	3.31	0.12	30.5	3,949	
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Mobile	0.13	0.12	0.19	1.37	< 0.005	< 0.005	0.41	0.41	< 0.005	0.10	0.11	—	392	392	0.01	0.02	0.47	398	
Area	0.03	0.25	< 0.005	0.19	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	0.72	0.72	< 0.005	< 0.005	—	0.72	
Energy	0.01	< 0.005	0.08	0.07	< 0.005	0.01	—	0.01	0.01	—	0.01	—	229	229	0.02	< 0.005	—	230	

Water	—	—	—	—	—	—	—	—	—	—	—	0.60	2.48	3.08	0.06	< 0.005	—	5.06
Waste	—	—	—	—	—	—	—	—	—	—	—	4.54	0.00	4.54	0.45	0.00	—	15.9
Refrig.	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	4.58	4.58
Total	0.18	0.37	0.27	1.63	< 0.005	0.01	0.41	0.42	0.01	0.10	0.11	5.14	624	629	0.55	0.02	5.05	654

3. Construction Emissions Details

3.1. Site Preparation (2025) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	4.82	4.05	37.5	32.4	0.05	1.93	—	1.93	1.78	—	1.78	—	5,528	5,528	0.22	0.04	—	5,547
Dust From Material Movement	—	—	—	—	—	—	5.66	5.66	—	2.69	2.69	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.50	0.42	3.90	3.38	0.01	0.20	—	0.20	0.18	—	0.18	—	576	576	0.02	< 0.005	—	578

Dust From Material Movement:	—	—	—	—	—	—	0.59	0.59	—	0.28	0.28	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.09	0.08	0.71	0.62	< 0.005	0.04	—	0.04	0.03	—	0.03	—	95.3	95.3	< 0.005	< 0.005	—	95.6
Dust From Material Movement:	—	—	—	—	—	—	0.11	0.11	—	0.05	0.05	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.09	0.08	0.09	0.98	0.00	0.00	0.23	0.23	0.00	0.05	0.05	—	226	226	0.01	0.01	0.02	229
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.01	0.11	0.00	0.00	0.02	0.02	0.00	0.01	0.01	—	24.2	24.2	< 0.005	< 0.005	0.04	24.6
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.02	0.00	0.00	< 0.005	< 0.005	0.00	< 0.005	< 0.005	—	4.01	4.01	< 0.005	< 0.005	0.01	4.07
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
---------	------	------	------	------	------	------	------	------	------	------	------	---	------	------	------	------	------	------

3.3. Grading (2025) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	4.24	3.57	32.6	29.4	0.06	1.52	—	1.52	1.40	—	1.40	—	6,715	6,715	0.27	0.05	—	6,738
Dust From Material Movement	—	—	—	—	—	—	2.67	2.67	—	0.98	0.98	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	4.24	3.57	32.6	29.4	0.06	1.52	—	1.52	1.40	—	1.40	—	6,715	6,715	0.27	0.05	—	6,738
Dust From Material Movement	—	—	—	—	—	—	2.67	2.67	—	0.98	0.98	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	1.34	1.12	10.3	9.27	0.02	0.48	—	0.48	0.44	—	0.44	—	2,116	2,116	0.09	0.02	—	2,123

Dust From Material Movement:	—	—	—	—	—	—	0.84	0.84	—	0.31	0.31	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.24	0.21	1.87	1.69	< 0.005	0.09	—	0.09	0.08	—	0.08	—	350	350	0.01	< 0.005	—	351
Dust From Material Movement:	—	—	—	—	—	—	0.15	0.15	—	0.06	0.06	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.12	0.11	0.10	1.66	0.00	0.00	0.26	0.26	0.00	0.06	0.06	—	292	292	0.01	0.01	1.07	296
Vendor	< 0.005	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	31.9	31.9	< 0.005	< 0.005	0.09	33.2
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.10	0.09	0.11	1.11	0.00	0.00	0.26	0.26	0.00	0.06	0.06	—	258	258	0.01	0.01	0.03	262
Vendor	< 0.005	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	31.9	31.9	< 0.005	< 0.005	< 0.005	33.2
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.03	0.03	0.04	0.39	0.00	0.00	0.08	0.08	0.00	0.02	0.02	—	83.8	83.8	< 0.005	< 0.005	0.15	84.9
Vendor	< 0.005	< 0.005	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	10.0	10.0	< 0.005	< 0.005	0.01	10.5
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.01	0.07	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	13.9	13.9	< 0.005	< 0.005	0.02	14.1
Vendor	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	1.66	1.66	< 0.005	< 0.005	< 0.005	1.73
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.5. Building Construction (2025) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.45	1.21	11.3	14.1	0.03	0.47	—	0.47	0.43	—	0.43	—	2,630	2,630	0.11	0.02	—	2,639
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.45	1.21	11.3	14.1	0.03	0.47	—	0.47	0.43	—	0.43	—	2,630	2,630	0.11	0.02	—	2,639
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.42	0.35	3.30	4.12	0.01	0.14	—	0.14	0.13	—	0.13	—	767	767	0.03	0.01	—	770
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.08	0.06	0.60	0.75	< 0.005	0.02	—	0.02	0.02	—	0.02	—	127	127	0.01	< 0.005	—	127

Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.12	0.11	0.10	1.72	0.00	0.00	0.27	0.27	0.00	0.06	0.06	—	302	302	0.01	0.01	1.10	306
Vendor	0.01	0.01	0.23	0.10	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	—	223	223	< 0.005	0.03	0.61	233
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.10	0.09	0.11	1.15	0.00	0.00	0.27	0.27	0.00	0.06	0.06	—	267	267	0.01	0.01	0.03	271
Vendor	0.01	0.01	0.24	0.10	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	—	223	223	< 0.005	0.03	0.02	232
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.03	0.03	0.03	0.38	0.00	0.00	0.08	0.08	0.00	0.02	0.02	—	80.2	80.2	< 0.005	< 0.005	0.14	81.3
Vendor	< 0.005	< 0.005	0.07	0.03	< 0.005	< 0.005	0.02	0.02	< 0.005	< 0.005	0.01	—	65.0	65.0	< 0.005	0.01	0.08	67.7
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.01	< 0.005	0.01	0.07	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	13.3	13.3	< 0.005	< 0.005	0.02	13.5
Vendor	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	< 0.005	—	10.8	10.8	< 0.005	< 0.005	0.01	11.2
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.7. Building Construction (2026) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.38	1.16	10.7	14.1	0.03	0.41	—	0.41	0.38	—	0.38	—	2,630	2,630	0.11	0.02	—	2,639
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.38	1.16	10.7	14.1	0.03	0.41	—	0.41	0.38	—	0.38	—	2,630	2,630	0.11	0.02	—	2,639
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.99	0.83	7.62	10.0	0.02	0.29	—	0.29	0.27	—	0.27	—	1,878	1,878	0.08	0.02	—	1,885
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.18	0.15	1.39	1.83	< 0.005	0.05	—	0.05	0.05	—	0.05	—	311	311	0.01	< 0.005	—	312
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.11	0.10	0.09	1.60	0.00	0.00	0.27	0.27	0.00	0.06	0.06	—	296	296	0.01	0.01	1.00	300
Vendor	0.01	0.01	0.22	0.09	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	—	219	219	< 0.005	0.03	0.55	228
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.10	0.09	0.10	1.06	0.00	0.00	0.27	0.27	0.00	0.06	0.06	—	262	262	< 0.005	0.01	0.03	265
Vendor	0.01	0.01	0.23	0.10	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	—	219	219	< 0.005	0.03	0.01	228
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.07	0.06	0.08	0.86	0.00	0.00	0.19	0.19	0.00	0.04	0.04	—	193	193	< 0.005	0.01	0.31	195
Vendor	0.01	0.01	0.16	0.07	< 0.005	< 0.005	0.04	0.04	< 0.005	0.01	0.01	—	156	156	< 0.005	0.02	0.17	163
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.01	0.16	0.00	0.00	0.03	0.03	0.00	0.01	0.01	—	31.9	31.9	< 0.005	< 0.005	0.05	32.3
Vendor	< 0.005	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	25.9	25.9	< 0.005	< 0.005	0.03	26.9
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.9. Building Construction (2027) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	1.33	1.11	10.2	14.0	0.03	0.36	—	0.36	0.34	—	0.34	—	2,630	2,630	0.11	0.02	—	2,639
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

Off-Road Equipment	1.33	1.11	10.2	14.0	0.03	0.36	—	0.36	0.34	—	0.34	—	2,630	2,630	0.11	0.02	—	2,639
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.95	0.79	7.27	10.0	0.02	0.26	—	0.26	0.24	—	0.24	—	1,878	1,878	0.08	0.02	—	1,885
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.17	0.14	1.33	1.83	< 0.005	0.05	—	0.05	0.04	—	0.04	—	311	311	0.01	< 0.005	—	312
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Worker	0.10	0.09	0.08	1.48	0.00	0.00	0.27	0.27	0.00	0.06	0.06	—	291	291	< 0.005	0.01	0.91	295
Vendor	0.01	0.01	0.21	0.09	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	—	214	214	< 0.005	0.03	0.49	223
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Worker	0.09	0.08	0.09	0.99	0.00	0.00	0.27	0.27	0.00	0.06	0.06	—	258	258	< 0.005	0.01	0.02	261
Vendor	0.01	0.01	0.22	0.09	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	—	214	214	< 0.005	0.03	0.01	223
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Worker	0.07	0.06	0.07	0.79	0.00	0.00	0.19	0.19	0.00	0.04	0.04	—	189	189	< 0.005	0.01	0.28	192
Vendor	0.01	< 0.005	0.16	0.06	< 0.005	< 0.005	0.04	0.04	< 0.005	0.01	0.01	—	153	153	< 0.005	0.02	0.15	159

Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.01	0.14	0.00	0.00	0.03	0.03	0.00	0.01	0.01	—	31.3	31.3	< 0.005	< 0.005	0.05	31.8	—	—	—	—	—
Vendor	< 0.005	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	25.3	25.3	< 0.005	< 0.005	0.03	26.3	—	—	—	—	—
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

3.11. Building Construction (2028) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.28	1.07	9.66	14.0	0.03	0.33	—	0.33	0.30	—	0.30	—	2,630	2,630	0.11	0.02	—	2,639
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	1.28	1.07	9.66	14.0	0.03	0.33	—	0.33	0.30	—	0.30	—	2,630	2,630	0.11	0.02	—	2,639
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.92	0.77	6.92	10.1	0.02	0.23	—	0.23	0.21	—	0.21	—	1,884	1,884	0.08	0.02	—	1,890
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Off-Road Equipment	0.17	0.14	1.26	1.83	< 0.005	0.04	—	0.04	0.04	—	0.04	—	312	312	0.01	< 0.005	—	313
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.10	0.09	0.07	1.37	0.00	0.00	0.27	0.27	0.00	0.06	0.06	—	285	285	< 0.005	0.01	0.81	289
Vendor	0.01	0.01	0.20	0.08	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	—	208	208	< 0.005	0.03	0.44	217
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.08	0.08	0.08	0.92	0.00	0.00	0.27	0.27	0.00	0.06	0.06	—	253	253	< 0.005	0.01	0.02	256
Vendor	0.01	0.01	0.22	0.09	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	—	209	209	< 0.005	0.03	0.01	217
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.06	0.06	0.06	0.74	0.00	0.00	0.19	0.19	0.00	0.04	0.04	—	186	186	< 0.005	0.01	0.25	189
Vendor	0.01	< 0.005	0.15	0.06	< 0.005	< 0.005	0.04	0.04	< 0.005	0.01	0.01	—	149	149	< 0.005	0.02	0.13	155
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.01	0.13	0.00	0.00	0.04	0.04	0.00	0.01	0.01	—	30.8	30.8	< 0.005	< 0.005	0.04	31.2
Vendor	< 0.005	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	24.7	24.7	< 0.005	< 0.005	0.02	25.7
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.13. Building Construction (2029) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
----------	-----	-----	-----	----	-----	-------	-------	-------	--------	--------	--------	------	-------	------	-----	-----	---	------

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.08	0.07	0.07	0.86	0.00	0.00	0.27	0.27	0.00	0.06	0.06	—	248	248	< 0.005	0.01	0.02	251
Vendor	0.01	0.01	0.21	0.08	< 0.005	< 0.005	0.06	0.06	< 0.005	0.02	0.02	—	203	203	< 0.005	0.03	0.01	211
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.06	0.06	0.06	0.68	0.00	0.00	0.19	0.19	0.00	0.04	0.04	—	182	182	< 0.005	0.01	0.22	185
Vendor	0.01	< 0.005	0.15	0.06	< 0.005	< 0.005	0.04	0.04	< 0.005	0.01	0.01	—	145	145	< 0.005	0.02	0.12	150
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.01	0.12	0.00	0.00	0.03	0.03	0.00	0.01	0.01	—	30.2	30.2	< 0.005	< 0.005	0.04	30.6
Vendor	< 0.005	< 0.005	0.03	0.01	< 0.005	< 0.005	0.01	0.01	< 0.005	< 0.005	< 0.005	—	24.0	24.0	< 0.005	< 0.005	0.02	24.9
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.15. Paving (2029) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Off-Road Equipment	0.80	0.67	6.46	9.92	0.01	0.24	—	0.24	0.22	—	0.22	—	1,511	1,511	0.06	0.01	—	1,516
Paving	—	0.30	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.80	0.67	6.46	9.92	0.01	0.24	—	0.24	0.22	—	0.22	—	1,511	1,511	0.06	0.01	—	1,516
Paving	—	0.30	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.17	0.14	1.36	2.09	< 0.005	0.05	—	0.05	0.05	—	0.05	—	319	319	0.01	< 0.005	—	320
Paving	—	0.06	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.03	0.03	0.25	0.38	< 0.005	0.01	—	0.01	0.01	—	0.01	—	52.8	52.8	< 0.005	< 0.005	—	52.9
Paving	—	0.01	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Offsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.06	0.06	0.05	0.93	0.00	0.00	0.20	0.20	0.00	0.05	0.05	—	203	203	< 0.005	0.01	0.53	206
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.06	0.05	0.05	0.62	0.00	0.00	0.20	0.20	0.00	0.05	0.05	—	180	180	< 0.005	0.01	0.01	182

Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Average Daily	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	0.01	0.01	0.01	0.15	0.00	0.00	0.04	0.04	0.00	0.01	0.01	—	39.1	39.1	< 0.005	< 0.005	0.05	39.6
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Worker	< 0.005	< 0.005	< 0.005	0.03	0.00	0.00	0.01	0.01	0.00	< 0.005	< 0.005	—	6.47	6.47	< 0.005	< 0.005	0.01	6.55
Vendor	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Hauling	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

3.17. Architectural Coating (2029) - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Location	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Onsite	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.17	0.14	1.06	1.48	< 0.005	0.02	—	0.02	0.02	—	0.02	—	178	178	0.01	< 0.005	—	179
Architectural Coatings	—	4.36	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Onsite truck	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Off-Road Equipment	0.17	0.14	1.06	1.48	< 0.005	0.02	—	0.02	0.02	—	0.02	—	178	178	0.01	< 0.005	—	179

4. Operations Emissions Details

4.1. Mobile Emissions by Land Use

4.1.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Hotel	1.56	1.41	1.78	17.9	0.05	0.03	4.39	4.43	0.03	1.11	1.15	—	4,943	4,943	0.12	0.19	12.9	5,014
High Turnover (Sit Down Restaurant)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00

Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Total	1.56	1.41	1.78	17.9	0.05	0.03	4.39	4.43	0.03	1.11	1.15	—	4,943	4,943	0.12	0.19	12.9	5,014
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Hotel	1.42	1.27	1.93	13.4	0.04	0.03	4.39	4.43	0.03	1.11	1.15	—	4,504	4,504	0.13	0.19	0.33	4,565
High Turnover (Sit Down Restaurant)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Total	1.42	1.27	1.93	13.4	0.04	0.03	4.39	4.43	0.03	1.11	1.15	—	4,504	4,504	0.13	0.19	0.33	4,565
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Hotel	0.13	0.12	0.19	1.37	< 0.005	< 0.005	0.41	0.41	< 0.005	0.10	0.11	—	392	392	0.01	0.02	0.47	398
High Turnover (Sit Down Restaurant)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	0.00	0.00	0.00	0.00
Total	0.13	0.12	0.19	1.37	< 0.005	< 0.005	0.41	0.41	< 0.005	0.10	0.11	—	392	392	0.01	0.02	0.47	398

4.2. Energy

4.2.1. Electricity Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Hotel	—	—	—	—	—	—	—	—	—	—	—	703	703	0.07	0.01	—	707	
High Turnover (Sit Down Restaurant)	—	—	—	—	—	—	—	—	—	—	—	93.1	93.1	0.01	< 0.005	—	93.7	
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	38.4	38.4	< 0.005	< 0.005	—	38.7	
Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	—	0.00	
Total	—	—	—	—	—	—	—	—	—	—	—	835	835	0.08	0.01	—	840	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Hotel	—	—	—	—	—	—	—	—	—	—	—	703	703	0.07	0.01	—	707	
High Turnover (Sit Down Restaurant)	—	—	—	—	—	—	—	—	—	—	—	93.1	93.1	0.01	< 0.005	—	93.7	
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	38.4	38.4	< 0.005	< 0.005	—	38.7	
Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	—	0.00	
Total	—	—	—	—	—	—	—	—	—	—	—	835	835	0.08	0.01	—	840	
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

Hotel	—	—	—	—	—	—	—	—	—	—	—	—	116	116	0.01	< 0.005	—	117
High Turnover (Sit Down Restaurant)	—	—	—	—	—	—	—	—	—	—	—	—	15.4	15.4	< 0.005	< 0.005	—	15.5
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	—	6.36	6.36	< 0.005	< 0.005	—	6.40
Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	—	—	138	138	0.01	< 0.005	—	139

4.2.3. Natural Gas Emissions By Land Use - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Hotel	0.04	0.02	0.37	0.31	< 0.005	0.03	—	0.03	0.03	—	0.03	—	445	445	0.04	< 0.005	—	446
High Turnover (Sit Down Restaurant)	0.01	< 0.005	0.09	0.07	< 0.005	0.01	—	0.01	0.01	—	0.01	—	103	103	0.01	< 0.005	—	103
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Total	0.05	0.03	0.46	0.39	< 0.005	0.03	—	0.03	0.03	—	0.03	—	547	547	0.05	< 0.005	—	549
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Hotel	0.04	0.02	0.37	0.31	< 0.005	0.03	—	0.03	0.03	—	0.03	—	445	445	0.04	< 0.005	—	446

High Turnover (Sit Down Restaurant)	0.01	< 0.005	0.09	0.07	< 0.005	0.01	—	0.01	0.01	—	0.01	—	103	103	0.01	< 0.005	—	103
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Total	0.05	0.03	0.46	0.39	< 0.005	0.03	—	0.03	0.03	—	0.03	—	547	547	0.05	< 0.005	—	549
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Hotel	0.01	< 0.005	0.07	0.06	< 0.005	0.01	—	0.01	0.01	—	0.01	—	73.6	73.6	0.01	< 0.005	—	73.8
High Turnover (Sit Down Restaurant)	< 0.005	< 0.005	0.02	0.01	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	17.0	17.0	< 0.005	< 0.005	—	17.0
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	—	0.00	0.00	—	0.00	—	0.00	0.00	0.00	0.00	—	0.00
Total	0.01	< 0.005	0.08	0.07	< 0.005	0.01	—	0.01	0.01	—	0.01	—	90.6	90.6	0.01	< 0.005	—	90.9

4.3. Area Emissions by Source

4.3.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Source	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

Consumer Products	—	1.08	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Architectural Coatings	—	0.09	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Landscape Equipment	0.38	0.35	0.02	2.14	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	8.81	8.81	< 0.005	< 0.005	—	8.84
Total	0.38	1.53	0.02	2.14	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	8.81	8.81	< 0.005	< 0.005	—	8.84
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Consumer Products	—	1.08	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Architectural Coatings	—	0.09	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	1.18	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Consumer Products	—	0.20	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Architectural Coatings	—	0.02	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Landscape Equipment	0.03	0.03	< 0.005	0.19	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	0.72	0.72	< 0.005	< 0.005	—	0.72
Total	0.03	0.25	< 0.005	0.19	< 0.005	< 0.005	—	< 0.005	< 0.005	—	< 0.005	—	0.72	0.72	< 0.005	< 0.005	—	0.72

4.4. Water Emissions by Land Use

4.4.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Hotel	—	—	—	—	—	—	—	—	—	—	—	1.77	9.67	11.4	0.18	< 0.005	—	17.3
High Turnover (Sit Down Restaurant)	—	—	—	—	—	—	—	—	—	—	—	1.85	5.28	7.13	0.19	< 0.005	—	13.3
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	—	3.62	15.0	18.6	0.37	0.01	—	30.6
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Hotel	—	—	—	—	—	—	—	—	—	—	—	1.77	9.67	11.4	0.18	< 0.005	—	17.3
High Turnover (Sit Down Restaurant)	—	—	—	—	—	—	—	—	—	—	—	1.85	5.28	7.13	0.19	< 0.005	—	13.3
Parking Lot	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00
Total	—	—	—	—	—	—	—	—	—	—	—	3.62	15.0	18.6	0.37	0.01	—	30.6

Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Hotel	—	—	—	—	—	—	—	—	—	—	0.29	1.60	1.89	0.03	< 0.005	—	2.87	
High Turnover (Sit Down Restaurant)	—	—	—	—	—	—	—	—	—	—	0.31	0.87	1.18	0.03	< 0.005	—	2.20	
Parking Lot	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00	
Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00	
Total	—	—	—	—	—	—	—	—	—	—	0.60	2.48	3.08	0.06	< 0.005	—	5.06	

4.5. Waste Emissions by Land Use

4.5.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Hotel	—	—	—	—	—	—	—	—	—	—	9.44	0.00	9.44	0.94	0.00	—	33.0	
High Turnover (Sit Down Restaurant)	—	—	—	—	—	—	—	—	—	—	18.0	0.00	18.0	1.79	0.00	—	62.8	
Parking Lot	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00	
Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00	
Total	—	—	—	—	—	—	—	—	—	—	27.4	0.00	27.4	2.74	0.00	—	95.9	

Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Hotel	—	—	—	—	—	—	—	—	—	—	9.44	0.00	9.44	0.94	0.00	—	33.0	
High Turnover (Sit Down Restaurant)	—	—	—	—	—	—	—	—	—	—	18.0	0.00	18.0	1.79	0.00	—	62.8	
Parking Lot	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00	
Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00	
Total	—	—	—	—	—	—	—	—	—	—	27.4	0.00	27.4	2.74	0.00	—	95.9	
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Hotel	—	—	—	—	—	—	—	—	—	—	1.56	0.00	1.56	0.16	0.00	—	5.47	
High Turnover (Sit Down Restaurant)	—	—	—	—	—	—	—	—	—	—	2.97	0.00	2.97	0.30	0.00	—	10.4	
Parking Lot	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00	
Other Asphalt Surfaces	—	—	—	—	—	—	—	—	—	—	0.00	0.00	0.00	0.00	0.00	—	0.00	
Total	—	—	—	—	—	—	—	—	—	—	4.54	0.00	4.54	0.45	0.00	—	15.9	

4.6. Refrigerant Emissions by Land Use

4.6.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e

Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Hotel	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	26.1	26.1	
High Turnover (Sit Down Restaurant)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	1.57	1.57	
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	27.6	27.6	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Hotel	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	26.1	26.1	
High Turnover (Sit Down Restaurant)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	1.57	1.57	
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	27.6	27.6	
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Hotel	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	4.32	4.32	
High Turnover (Sit Down Restaurant)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	0.26	0.26	
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	4.58	4.58	

4.7. Offroad Emissions By Equipment Type

4.7.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e

Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

4.8. Stationary Emissions By Equipment Type

4.8.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

4.9. User Defined Emissions By Equipment Type

4.9.1. Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Equipment Type	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

4.10. Soil Carbon Accumulation By Vegetation Type

4.10.1. Soil Carbon Accumulation By Vegetation Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Vegetation	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	

Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
-------	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---	---

4.10.2. Above and Belowground Carbon Accumulation by Land Use Type - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Land Use	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Total	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

4.10.3. Avoided and Sequestered Emissions by Species - Unmitigated

Criteria Pollutants (lb/day for daily, ton/yr for annual) and GHGs (lb/day for daily, MT/yr for annual)

Species	TOG	ROG	NOx	CO	SO2	PM10E	PM10D	PM10T	PM2.5E	PM2.5D	PM2.5T	BCO2	NBCO2	CO2T	CH4	N2O	R	CO2e
Daily, Summer (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Daily, Winter (Max)	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Annual	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Avoided	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Sequestered	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Removed	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
Subtotal	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—
—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—	—

5. Activity Data

5.1. Construction Schedule

Phase Name	Phase Type	Start Date	End Date	Days Per Week	Work Days per Phase	Phase Description
------------	------------	------------	----------	---------------	---------------------	-------------------

Site Preparation	Site Preparation	1/2/2025	2/24/2025	5.00	38.0	10
Grading	Grading	2/25/2025	8/4/2025	5.00	115	30
Building Construction	Building Construction	8/5/2025	12/31/2029	5.00	1,150	300
Paving	Paving	9/14/2029	12/31/2029	5.00	77.0	20
Architectural Coating	Architectural Coating	9/14/2029	12/31/2029	5.00	77.0	20

5.2. Off-Road Equipment

5.2.1. Unmitigated

Phase Name	Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
Site Preparation	Rubber Tired Dozers	Diesel	Average	3.00	8.00	367	0.40
Site Preparation	Crawler Tractors	Diesel	Average	4.00	8.00	87.0	0.43
Grading	Graders	Diesel	Average	1.00	8.00	148	0.41
Grading	Excavators	Diesel	Average	2.00	8.00	36.0	0.38
Grading	Scrapers	Diesel	Average	2.00	8.00	423	0.48
Grading	Rubber Tired Dozers	Diesel	Average	1.00	8.00	367	0.40
Grading	Crawler Tractors	Diesel	Average	2.00	8.00	87.0	0.43
Building Construction	Forklifts	Diesel	Average	3.00	8.00	82.0	0.20
Building Construction	Generator Sets	Diesel	Average	1.00	8.00	14.0	0.74
Building Construction	Cranes	Diesel	Average	1.00	8.00	367	0.29
Building Construction	Welders	Diesel	Average	1.00	8.00	46.0	0.45
Building Construction	Tractors/Loaders/Backhoes	Diesel	Average	3.00	8.00	84.0	0.37
Paving	Pavers	Diesel	Average	2.00	8.00	81.0	0.42
Paving	Paving Equipment	Diesel	Average	2.00	8.00	89.0	0.36
Paving	Rollers	Diesel	Average	2.00	8.00	36.0	0.38
Architectural Coating	Air Compressors	Diesel	Average	1.00	8.00	37.0	0.48

5.3. Construction Vehicles

5.3.1. Unmitigated

Phase Name	Trip Type	One-Way Trips per Day	Miles per Trip	Vehicle Mix
Site Preparation	—	—	—	—
Site Preparation	Worker	17.5	18.5	LDA,LDT1,LDT2
Site Preparation	Vendor	—	10.2	HHDT,MHDT
Site Preparation	Hauling	0.00	20.0	HHDT
Site Preparation	Onsite truck	—	—	HHDT
Grading	—	—	—	—
Grading	Worker	20.0	18.5	LDA,LDT1,LDT2
Grading	Vendor	1.00	10.2	HHDT,MHDT
Grading	Hauling	0.00	20.0	HHDT
Grading	Onsite truck	—	—	HHDT
Building Construction	—	—	—	—
Building Construction	Worker	20.7	18.5	LDA,LDT1,LDT2
Building Construction	Vendor	7.00	10.2	HHDT,MHDT
Building Construction	Hauling	0.00	20.0	HHDT
Building Construction	Onsite truck	—	—	HHDT
Paving	—	—	—	—
Paving	Worker	15.0	18.5	LDA,LDT1,LDT2
Paving	Vendor	—	10.2	HHDT,MHDT
Paving	Hauling	0.00	20.0	HHDT
Paving	Onsite truck	—	—	HHDT
Architectural Coating	—	—	—	—
Architectural Coating	Worker	4.14	18.5	LDA,LDT1,LDT2
Architectural Coating	Vendor	—	10.2	HHDT,MHDT

Architectural Coating	Hauling	0.00	20.0	HHDT
Architectural Coating	Onsite truck	—	—	HHDT

5.4. Vehicles

5.4.1. Construction Vehicle Control Strategies

Non-applicable. No control strategies activated by user.

5.5. Architectural Coatings

Phase Name	Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
Architectural Coating	0.00	0.00	73,896	24,632	23,188

5.6. Dust Mitigation

5.6.1. Construction Earthmoving Activities

Phase Name	Material Imported (cy)	Material Exported (cy)	Acres Graded (acres)	Material Demolished (sq. ft.)	Acres Paved (acres)
Site Preparation	—	—	133	0.00	—
Grading	—	—	460	0.00	—
Paving	0.00	0.00	0.00	0.00	8.87

5.6.2. Construction Earthmoving Control Strategies

Control Strategies Applied	Frequency (per day)	PM10 Reduction	PM2.5 Reduction
Water Exposed Area	3	74%	74%

5.7. Construction Paving

Land Use	Area Paved (acres)	% Asphalt
----------	--------------------	-----------

Hotel	0.00	0%
High Turnover (Sit Down Restaurant)	0.00	0%
Parking Lot	1.06	100%
Other Asphalt Surfaces	7.81	100%

5.8. Construction Electricity Consumption and Emissions Factors

kWh per Year and Emission Factor (lb/MWh)

Year	kWh per Year	CO2	CH4	N2O
2025	0.00	349	0.03	< 0.005
2026	0.00	346	0.03	< 0.005
2027	0.00	346	0.03	< 0.005
2028	0.00	346	0.03	< 0.005
2029	0.00	346	0.03	< 0.005

5.9. Operational Mobile Sources

5.9.1. Unmitigated

Land Use Type	Trips/Weekday	Trips/Saturday	Trips/Sunday	Trips/Year	VMT/Weekday	VMT/Saturday	VMT/Sunday	VMT/Year
Hotel	107	279	188	52,310	2,394	6,225	4,210	1,168,320
High Turnover (Sit Down Restaurant)	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Parking Lot	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
Other Asphalt Surfaces	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00

5.10. Operational Area Sources

5.10.1. Hearths

5.10.1.1. Unmitigated

5.10.2. Architectural Coatings

Residential Interior Area Coated (sq ft)	Residential Exterior Area Coated (sq ft)	Non-Residential Interior Area Coated (sq ft)	Non-Residential Exterior Area Coated (sq ft)	Parking Area Coated (sq ft)
0	0.00	73,896	24,632	23,188

5.10.3. Landscape Equipment

Season	Unit	Value
Snow Days	day/yr	0.00
Summer Days	day/yr	180

5.11. Operational Energy Consumption

5.11.1. Unmitigated

Electricity (kWh/yr) and CO2 and CH4 and N2O and Natural Gas (kBtu/yr)

Land Use	Electricity (kWh/yr)	CO2	CH4	N2O	Natural Gas (kBtu/yr)
Hotel	741,447	346	0.0330	0.0040	1,387,903
High Turnover (Sit Down Restaurant)	98,187	346	0.0330	0.0040	319,958
Parking Lot	40,524	346	0.0330	0.0040	0.00
Other Asphalt Surfaces	0.00	346	0.0330	0.0040	0.00

5.12. Operational Water and Wastewater Consumption

5.12.1. Unmitigated

Land Use	Indoor Water (gal/year)	Outdoor Water (gal/year)
----------	-------------------------	--------------------------

Hotel	923,463	1,151,204
High Turnover (Sit Down Restaurant)	966,872	0.00
Parking Lot	0.00	0.00
Other Asphalt Surfaces	0.00	0.00

5.13. Operational Waste Generation

5.13.1. Unmitigated

Land Use	Waste (ton/year)	Cogeneration (kWh/year)
Hotel	17.5	—
High Turnover (Sit Down Restaurant)	33.3	—
Parking Lot	0.00	—
Other Asphalt Surfaces	0.00	—

5.14. Operational Refrigeration and Air Conditioning Equipment

5.14.1. Unmitigated

Land Use Type	Equipment Type	Refrigerant	GWP	Quantity (kg)	Operations Leak Rate	Service Leak Rate	Times Serviced
Hotel	Household refrigerators and/or freezers	User Defined	150	0.00	0.60	0.00	1.00
Hotel	Other commercial A/C and heat pumps	User Defined	750	1.80	4.00	4.00	18.0
Hotel	Walk-in refrigerators and freezers	User Defined	150	< 0.005	7.50	7.50	20.0
High Turnover (Sit Down Restaurant)	Household refrigerators and/or freezers	User Defined	150	0.00	0.60	0.00	1.00
High Turnover (Sit Down Restaurant)	Other commercial A/C and heat pumps	User Defined	750	1.80	4.00	4.00	18.0

High Turnover (Sit Down Restaurant)	Walk-in refrigerators and freezers	User Defined	150	< 0.005	7.50	7.50	20.0
-------------------------------------	------------------------------------	--------------	-----	---------	------	------	------

5.15. Operational Off-Road Equipment

5.15.1. Unmitigated

Equipment Type	Fuel Type	Engine Tier	Number per Day	Hours Per Day	Horsepower	Load Factor
----------------	-----------	-------------	----------------	---------------	------------	-------------

5.16. Stationary Sources

5.16.1. Emergency Generators and Fire Pumps

Equipment Type	Fuel Type	Number per Day	Hours per Day	Hours per Year	Horsepower	Load Factor
----------------	-----------	----------------	---------------	----------------	------------	-------------

5.16.2. Process Boilers

Equipment Type	Fuel Type	Number	Boiler Rating (MMBtu/hr)	Daily Heat Input (MMBtu/day)	Annual Heat Input (MMBtu/yr)
----------------	-----------	--------	--------------------------	------------------------------	------------------------------

5.17. User Defined

Equipment Type	Fuel Type
----------------	-----------

5.18. Vegetation

5.18.1. Land Use Change

5.18.1.1. Unmitigated

Vegetation Land Use Type	Vegetation Soil Type	Initial Acres	Final Acres
--------------------------	----------------------	---------------	-------------

5.18.1. Biomass Cover Type

5.18.1.1. Unmitigated

Biomass Cover Type	Initial Acres	Final Acres
--------------------	---------------	-------------

5.18.2. Sequestration

5.18.2.1. Unmitigated

Tree Type	Number	Electricity Saved (kWh/year)	Natural Gas Saved (btu/year)
-----------	--------	------------------------------	------------------------------

6. Climate Risk Detailed Report

6.1. Climate Risk Summary

Cal-Adapt midcentury 2040–2059 average projections for four hazards are reported below for your project location. These are under Representation Concentration Pathway (RCP) 8.5 which assumes GHG emissions will continue to rise strongly through 2050 and then plateau around 2100.

Climate Hazard	Result for Project Location	Unit
Temperature and Extreme Heat	35.9	annual days of extreme heat
Extreme Precipitation	0.75	annual days with precipitation above 20 mm
Sea Level Rise	—	meters of inundation depth
Wildfire	1.78	annual hectares burned

Temperature and Extreme Heat data are for grid cell in which your project are located. The projection is based on the 98th historical percentile of daily maximum/minimum temperatures from observed historical data (32 climate model ensemble from Cal-Adapt, 2040–2059 average under RCP 8.5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Extreme Precipitation data are for the grid cell in which your project are located. The threshold of 20 mm is equivalent to about $\frac{3}{4}$ an inch of rain, which would be light to moderate rainfall if received over a full day or heavy rain if received over a period of 2 to 4 hours. Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

Sea Level Rise data are for the grid cell in which your project are located. The projections are from Radke et al. (2017), as reported in Cal-Adapt (Radke et al., 2017, CEC-500-2017-008), and consider inundation location and depth for the San Francisco Bay, the Sacramento-San Joaquin River Delta and California coast resulting different increments of sea level rise coupled with extreme storm events.

Users may select from four scenarios to view the range in potential inundation depth for the grid cell. The four scenarios are: No rise, 0.5 meter, 1.0 meter, 1.41 meters

Wildfire data are for the grid cell in which your project are located. The projections are from UC Davis, as reported in Cal-Adapt (2040–2059 average under RCP 8.5), and consider historical data of climate, vegetation, population density, and large (> 400 ha) fire history. Users may select from four model simulations to view the range in potential wildfire probabilities for the grid cell. The four simulations make different assumptions about expected rainfall and temperature are: Warmer/drier (HadGEM2-ES), Cooler/wetter (CNRM-CM5), Average conditions (CanESM2), Range of different rainfall and temperature possibilities (MIROC5). Each grid cell is 6 kilometers (km) by 6 km, or 3.7 miles (mi) by 3.7 mi.

6.2. Initial Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	5	0	0	N/A
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	0	0	0	N/A
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores do not include implementation of climate risk reduction measures.

6.3. Adjusted Climate Risk Scores

Climate Hazard	Exposure Score	Sensitivity Score	Adaptive Capacity Score	Vulnerability Score
Temperature and Extreme Heat	5	1	1	4
Extreme Precipitation	N/A	N/A	N/A	N/A
Sea Level Rise	N/A	N/A	N/A	N/A
Wildfire	N/A	N/A	N/A	N/A
Flooding	N/A	N/A	N/A	N/A
Drought	1	1	1	2
Snowpack Reduction	N/A	N/A	N/A	N/A
Air Quality Degradation	N/A	N/A	N/A	N/A

The sensitivity score reflects the extent to which a project would be adversely affected by exposure to a climate hazard. Exposure is rated on a scale of 1 to 5, with a score of 5 representing the greatest exposure.

The adaptive capacity of a project refers to its ability to manage and reduce vulnerabilities from projected climate hazards. Adaptive capacity is rated on a scale of 1 to 5, with a score of 5 representing the greatest ability to adapt.

The overall vulnerability scores are calculated based on the potential impacts and adaptive capacity assessments for each hazard. Scores include implementation of climate risk reduction measures.

6.4. Climate Risk Reduction Measures

7. Health and Equity Details

7.1. CalEnviroScreen 4.0 Scores

The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Exposure Indicators	—
AQ-Ozone	93.6
AQ-PM	1.44
AQ-DPM	0.71
Drinking Water	55.1
Lead Risk Housing	32.7
Pesticides	1.34
Toxic Releases	7.68
Traffic	1.70
Effect Indicators	—
CleanUp Sites	68.9
Groundwater	0.00
Haz Waste Facilities/Generators	0.00
Impaired Water Bodies	0.00
Solid Waste	23.0
Sensitive Population	—
Asthma	52.5
Cardio-vascular	97.5
Low Birth Weights	45.9
Socioeconomic Factor Indicators	—

Education	46.5
Housing	75.7
Linguistic	33.3
Poverty	84.9
Unemployment	98.7

7.2. Healthy Places Index Scores

The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

Indicator	Result for Project Census Tract
Economic	—
Above Poverty	8.161170281
Employed	2.091620685
Median HI	6.73681509
Education	—
Bachelor's or higher	21.46798409
High school enrollment	100
Preschool enrollment	1.873476197
Transportation	—
Auto Access	89.83703323
Active commuting	1.039394328
Social	—
2-parent households	34.44116515
Voting	53.98434492
Neighborhood	—
Alcohol availability	91.10740408
Park access	31.79776723
Retail density	2.977030669

Supermarket access	2.399589375
Tree canopy	0.025664057
Housing	—
Homeownership	87.62992429
Housing habitability	62.69729244
Low-inc homeowner severe housing cost burden	42.06339022
Low-inc renter severe housing cost burden	11.6514821
Uncrowded housing	79.21211344
Health Outcomes	—
Insured adults	41.5629411
Arthritis	0.0
Asthma ER Admissions	56.3
High Blood Pressure	0.0
Cancer (excluding skin)	0.0
Asthma	0.0
Coronary Heart Disease	0.0
Chronic Obstructive Pulmonary Disease	0.0
Diagnosed Diabetes	0.0
Life Expectancy at Birth	0.6
Cognitively Disabled	3.1
Physically Disabled	2.5
Heart Attack ER Admissions	23.6
Mental Health Not Good	0.0
Chronic Kidney Disease	0.0
Obesity	0.0
Pedestrian Injuries	81.9
Physical Health Not Good	0.0

Stroke	0.0
Health Risk Behaviors	—
Binge Drinking	0.0
Current Smoker	0.0
No Leisure Time for Physical Activity	0.0
Climate Change Exposures	—
Wildfire Risk	0.0
SLR Inundation Area	0.0
Children	88.7
Elderly	20.2
English Speaking	77.5
Foreign-born	9.7
Outdoor Workers	15.3
Climate Change Adaptive Capacity	—
Impervious Surface Cover	99.4
Traffic Density	0.1
Traffic Access	23.0
Other Indices	—
Hardship	73.4
Other Decision Support	—
2016 Voting	78.7

7.3. Overall Health & Equity Scores

Metric	Result for Project Census Tract
CalEnviroScreen 4.0 Score for Project Location (a)	35.0
Healthy Places Index Score for Project Location (b)	10.0
Project Located in a Designated Disadvantaged Community (Senate Bill 535)	No

Project Located in a Low-Income Community (Assembly Bill 1550)	Yes
Project Located in a Community Air Protection Program Community (Assembly Bill 617)	No

a: The maximum CalEnviroScreen score is 100. A high score (i.e., greater than 50) reflects a higher pollution burden compared to other census tracts in the state.

b: The maximum Health Places Index score is 100. A high score (i.e., greater than 50) reflects healthier community conditions compared to other census tracts in the state.

7.4. Health & Equity Measures

No Health & Equity Measures selected.

7.5. Evaluation Scorecard

Health & Equity Evaluation Scorecard not completed.

7.6. Health & Equity Custom Measures

No Health & Equity Custom Measures created.

8. User Changes to Default Data

Screen	Justification
Land Use	Taken from site plan
Construction: Construction Phases	Taken from client data Building Construction, Paving, and Architectural Coating overlap to present a conservative analysis Construction schedule expanded to account for 2029 Opening Year
Construction: Off-Road Equipment	T/L/B replaced with Crawler Tractor to accurately calculate disturbance for Site Preparation and Grading phases. Standard 8 hours work days
Construction: Trips and VMT	Vendor Trips adjusted based on CalEEMod defaults for Building Construction and number of days for Site Preparation, Grading, and Building Construction
Operations: Vehicle Data	Trip characteristics provided from the Trip Generation
Operations: Water and Waste Water	Per client data, the Project will have an estimated daily flow rate of 5,179 gallons/day
Operations: Refrigerants	As of 1 January 2022, new commercial refrigeration equipment may not use refrigerants with a GWP of 150 or greater. Further, R-404A (the CalEEMod default) is unacceptable for new supermarket and cold storage systems as of 1 January 2019 and 2023, respectively. Beginning 1 January 2025, all new air conditioning equipment may not use refrigerants with a GWP of 750 or greater.